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PRE FACE

This publication consists of a series of lectures prepared by personnel of the NASA

Langley Research Center. Collectively, they were presented as a graduate seminar at

Rensselaer Polytechnic Institute, Troy, New York, under the auspices of Professor Robert

E. Duffy. The lectures summarize theoretical and experimental work in a number of

areas of current interest in the design of aeronautical and space vehicles and were

intended as an extension of general academic studies toward applications to solutions of

practical problems.

The material presented is not intended to be a comprehensive survey of the state

of the art but rather a series of r6sum_s of work in several areas, some of which repre-

sent fairly recent developments and others in which the significant contributions are dis-

tributed in various publications. The material covered reflects the specialties and view-

points of the individual lecturers and little effort has been made to provide continuity

between the different papers. The topics are, nevertheless, grouped under three general

headings, as follows:

1. Aerodynamics of vehicles in various speed ranges

2. Problems involving aeroelasticity and unsteady aerodynamics

3. Methods and application of analytical techniques in dynamic stability

problems

The material is considered suitable for providing aeronautical engineering students with

background information and working knowledge in a number of specialized fields which

are usually omitted or discussed only briefly in an undergraduate curriculum.

...
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I. STABILITY AND CONTROL CHARACTERISTICS OF

STOL AND V/STOL AIRPLANES

By Joseph R. Chambers

Langley Research Center

ABSTRACT

Some of the stabilityand control characteristics common to most V/STOL airplanes

are discussed. In particular,specific stabilityand control problems of deflected slil_-

stream, tilt-wing,ducted-propeller, and jet-powered vehicles are covered. The contents

include a variety of experimental and analyticaltechniques presently used to analyze the

stabilityand control characteristics of V/STOL airplanes.

INTRODUCTION

Since the earliest days of manned flight, emphasis has usually been placed on

obtaining the maximum speed capability for advanced airplane configurations. This

emphasis has not diminished today, as evidenced by flight tests of supersonic transports

and studies of hypersonic cruise vehicles. In contrast to this emphasis on speed, how-

ever, recent military and commercial aviation experience has led to a pronounced inter-

est in vehicles that can attain lower minimum operating speeds. From an operational

point of view, lower approach and take-off speeds result in a more versatile airplane that

requires a minimum amount of take-off and landing distance. As a result of interest in

attaining lower operating speeds, a number of new types of airplanes having vertical

and/or short take-off and landing capabilities are being actively developed. This paper

describes some of the more promising short take-off and landing (STOL) and vertical/

short take-off and landing (V/STOL) concepts and points out some of their associated sta-

bility, control, and handling quality characteristics.

At this point, the abbreviations used to identify the airplane configurations to be

studied are defined. First, the basic definitions of VTOL, STOL, and V/STOL airplanes

are explained.

(1) A VTOL airplane has a capability for vertical take-off and landing; as a result

it does not require a runway for nnrma| operations.

(2) STOL airplanes are capable of extremely short take-offs and landings, but they

have no VTOL capability, and therefore require a take-off and landing ground run for

normal operation.



(3) The V/STOL airplane has the capability to perform either vertical or short
take-offs andlandings. It shouldbe notedthat a V/STOL airplane may operate a major-
ity of the time in the STOLmodeof operation dueto economicand safety considerations.

This paper is concernedwith the stability and control characteristics of STOL
and V/STOL airplanes with the exceptionof the helicopter. The material presentedwas
taken from the technical publications given in the Bibliography.

An outline of the principal topics of this paper is as follows: First, the basic
characteristics of STOLandV/STOL airplanes are described. The next section dis-
ctisses the stability and control characteristics of STOLairplanes. Past research on
stability andcontrol characteristics of STOL conceptsis discussedby using results
obt_dnedduring flight tests of a jet transport equippedwith boundary-layer control. The
current status of STOLairplane developmentis discussed; then a projection of future
STOLconceptspoweredby the external-flow jet flap is presented. The next major sec-
tion of the lecture covers the general area of V/STOL airplanes. In that section, stabil-
ity and control characteristics of airplanes employing typical V/STOL propulsive con-
cepts suchas the tilt-wing, ducted-propeller, andvectored-thrust jet engineare exam-
ined. Thefinal section of the paper is devotedto a discussion of the principles and
application of several specialized test techniques commonlyused at the NASALangley
Research Center to evaluate the stability and control characteristics of V/STOL designs.

SYMBOLS

CL

CLu

C1

Cl B

C/p

lateral acceleration

wing span

mean aerodynamic chord

lift coefficient

lift-curve slope

rolling-moment coefficient

effective dihedral parameter

damping-in-roll parameter



Cm pitching-moment coefficient

C n yawing-moment coefficient

Cnp

Cn r

Cnf 

yawing moment due to roll

damping-in-yaw parameter

directional stability parameter

yawing moment due to rate of change of sideslip

Cn5 a

CT

yawing moment due to aileron deflection

thrust coefficient

D

lateral force coefficient due to sideslip

drag; also propeller diameter

Fx axial force

aFx/Sq

FXq- m

8Fx/_U
FXu = m

_)Fx/aw
FXw= m

F z vertical force

_Fz/aq
FZq - m

8Fz/Su
FZu - m

a_ Z/aw
FZw - m

g gravity



h distance from lower surface of fuselage to ground

i w wing incidence

Ix moment of inertia about X body axis

Iy moment of inertia about Y body axis

characteristic ........,e._ui

L _ lift

Loo lift out of ground effect

m mass

Mx rolling moment

My

Myq-

MYu -

Myw -

My_-

Myo l -

Myo -

pitching moment

aMy/aq

Iy

aMy/au

Iy

aMy/

Iy

aMy/a_v
Iy

aMy
a_

aMy
aa

MZ yawing moment

MZ_

NFr

yawing moment out of ground effect

Froude number



q

rmax

s

pitching velocity

maximum yawing acceleration

LaPlace operator

t time

T thrust

T s static thrust

u perturbation velocity along X body axis

v i

V

induced velocity

airspeed

slipstream velocity

velocity perturbation along Z body axis

•& time derivative of w

W weight

Ot angle of attack

angle of sideslip

time derivative of sideslip

6 n

0

¢0

nozzle deflection

pitch attitude

real part of root of characteristic equation

imaginary part of root'of characteristic equation



p density

_b roll attitude

BASIC CHARACTERISTICS OF STOL AND V/STOL AIRPLANES

Before specific details are discussed, consideration should be given to some basic

aerodynamic characteristics of STOL and V/STOL configurations which determine to a

great extent their stabi!ity, control_ and handling-quality characteristics.

Shown in figure 1 are some fundamental relationships between lift and power

required for a conventional airplane and for a typical V/STOL airplane. Plotted along

the vertical scales are the variations with airspeed of the lift (in percent of weight) and

the power required for level flight for both airplanes. On the lower plot, the solid line

represents the classical variation of power required for the conventional airplane. The

upper plot shows that the conventional airplane is supported solely by aerodynamic lift

as speed is reduced from cruising flight down to the stall. On the other hand, the plots

show that the aerodynamic lift supporting a V/STOL airplane is gradually replaced by

powered lift as an airspeed of zero, or hovering flight, is approached. In the speed range

where powered lift must be used - the so-called transition speed range - the power

required for the V/STOL airplane rises rapidly up to a maximum value at hovering flight.

This characteristic leads to flight operations on the so-called "back side" of the power-

required curve, which in turn may require the use of unconventional piloting techniques

and stability augmentation. The STOL airplane is usually operated over a more limited

portion of the back side of the power-required curve, but it also may experience some of

the problems associated with back-side operation.

The V/STOL airplane is also subject to stability and control deficiencies at low air-

speeds, as illustrated in figure 2. Shown are typical variations of aerodynamic stability

and control with airspeed for a V/STOL airplane from hovering flight through the transi-

tion to cruising flight. The V/STOL airplane is assumed to have satisfactory aerody-

namic stability and control in cruising flight. Naturally, since all the parameters vary

with dynamic pressure in the airstream, their relative magnitudes drop off rapidly as

airsp.eed is reduced. The top plot shows that no aerodynamic control is available from

conventional airplane control surfaces in hovering flight unless the control surfaces are

located in a high-velocity slipstream. As a consequence, V/STOL airplanes are usually

equipped with special control systems which do not rely on airstream dynamic pressure

for effectiveness; these systems are exemplified by reaction jets powered by compressed

air bled from compressor stages of jet engines. The middle plot of figure 2 indicates

that all V/STOL airplanes have neutral static stability with respect to attitude in hovering



flight. This characteristic is often eliminated by the use of artificial attitude stabiliza-

tion, as will be discussed in a later section of this paper. As for dynamic stability, the

lower plot shows that most V/STOL designs are dynamically unstable in hovering flight.

These inherent instabilities are usually composed of unstable pitching and rolling oscilla-

tions. The lack of static and dynamic stability does not prevent V/STOL airplanes from

being flown under ideal visual flight conditions, but it does lead to unacceptable handling

characteristics during instrument flight conditions which must be improved by artificial

stability augmentation before satisfactory operation can be obtained. These inherent

deficiencies and limitations indicate that a typical V/STOL airplane will in general haye

stability, control, and handling-quality characteristics which steadily deteriorate as air-

speed is decreased. These important deficiencies should be kept in mind during the,fol-

lowing sections of this paper.

STABILITY AND CONTROL CHARACTERISTICS OF STOL AIRPLANES

Airport Congestion

Interest in airplanes designed for short take-off and landing (STOL) has been

expressed since the invention of the airplane, but within the last few years this interest

has become increasingly intense. Perhaps the most important factor behind the active

studies of STOL airplanes has been recent experience with congestion of our commercial

airway system. Studies of passenger destinations have shown that more than half of the

daily traffic at most of our major airports is bound for destinations involving trips of

less than 300 miles. A concentrated effort is therefore being made to develop additional

airway systems which could make use of secondary airports to relieve the major airports

of some of the congestion created by this so-called "short-haul" traffic. Of course, most

secondary airfields currently available for use are of insufficient length for conventional

transport airplanes with nominal passenger loads of 120 or more. As a result of these

and other associated operating limitations, the STOL airplane is envisioned as a possible

solution to the congestion problems of commercial airways. In general, STOL airplanes

have been developed from modifications to more or less conventional airplane co.ufig_qra-

tions. Recent STOL designs, for example, have employed full-span flaps with the wing

partially or completely immersed in the slipstream of the propulsion units to achieve

the high lift augmentation required for STOL operation. As a result of their conven-

tional airframe geometry, most STOL airplanes do not exhibit unsatisfactory or uncon-

ventional flying qualities in cruising flight. A discussion of the stability and control

characteristics of STOL airplanes will therefore consist of a consideration of the normal

deterioration of handling qualities of conventional airplanes as airspeed is reduced and

the types of artificial stability and control augmentation necessary to ensure satisfactory

flying r, _'lities.



Problems of STOLOperation

For a number of years, the NASAhas investigated several STOLairplanes to
obtain information relating to the performance, handlingqualities, andoperational char-
acteristics of airplanes during STOLoperation. Theseinvestigations have madeit pos-
sible to documentand in most cases to improve the basic stability and control character-
istics of this type of airplane. The results of the studies have pointedout several
stability andcontrol problem areas that appear to be commonto most STOLdesigns.
This part of the paper presents someof the results obtainedduring a series of flight

lift coefficients andlow airspeed. Although not capableof true STOLperformance, the
airplane tested was, in general, foundto haveflying qualities quite typical of large STOL
airplanes andtherefore is usedto point out someof the stability and control character-

istics peculiar to these vehicles.

Airplane and evaluation procedures.- One method of improving the low-speed lift

capabilities of high performance aircraft is boundary-layer control or "blown flaps."

Recent flight test experience with a boundary-layer-control (BLC) jet transport at the

Langley Research Center and the Ames Research Center has led to a better understanding

of the stability and control characteristics of large STOL aircraft. The test airplane

used in the investigations was a modified Boeing 707 prototype shown in figure 3. The

airplane incorporated a powered-lift BLC system which used compressed air bled from

the four engines. The wing was modified with a fixed leading-edge slat so as to avoid

stall induced by the upwash associated with BLC operation. A simple hinged-flap sys-

tem was used, and the maximum flap deflection tested was 85 ° . An enlarged horizontal

tail having 25 percent larger area was used to improve the longitudinal stability and trim

characteristics and an inverted leading-edge slat was fitted to the horizontal tail for

improved trim capability at high negative lift conditions.

The BLC system used by the airplane is illustrated in figure 4. Compressed air

was bled from each of the four engine compressors into a dual ducting system. As shown

in the sketch in the upper left-hand corner, nozzles through which the compressed air was

ejected were alternated along the entire length of the trailing-edge flaps to minimize lift

loss in the event of engine failure. A typical cross section (section A-A) of the nozzle-

ejector-flap system is shown in the lower right-hand sketch.

The airplane also employed a thrust-modulation system to permit high power set-

tings on the jet engines for BLC operation while simultaneously reducing the net thrust

of the engines to the lower levels normally associated with the landing approach. As

shown in figure 5, the thrust-modulation system consisted of continuously controllable

clamshell-type thrust reversers located in each of the four engine tailpipes. The thrust-

modulation system was used in place of the normal throttle control during all BLC flight



conditions. As shownin figure 6, the thrust-modulation system proved to have rapid
response in comparison to normal throttle control. The rapid responseobtained with

the thrust modulators permitted the pilot to maintain more precise control of airspeed

during the landing approach. The thrust-modulation system was also used as a unit of

an automatic airspeed-control system to be discussed in a subsequent section of this

paper.

Pilot opinions of the flying qualities of the airplane were obtained under simulated

instrument flight rules (IFR) during landing approaches in which the BLC system was in

operation. These evaluation conditions provided a reasonable requirement for preci@g

piloting techniques similar to actual IFR flight operations. The pilot's evaluation task

consisted of first intercepting the localizer at about 8 miles from the runway at an alti-

tude of 1500 feet (457 meters). At the intercept of the glide slope, approximately

5 miles from the runway, the pilot initiated the descent and flew the glide path as closely

as possible. Following a simulated IFR breakout at 200 feet (61 meters), the pilot con-

tinued visually to touchdown.

Pilot's rating.- A summary of pilot opinions of the test airplane during approaches

with BLC is shown in figure 7. Pilot numerical ratings for the longitudinal and lateral-

directional axes are plotted as functions of airspeed, which was varied from the normal

approach speed of about 140 knots down to 80 knots. Increasing (numerically larger)

values of pilot rating correspond to less acceptable handling-quality characteristics.

The data indicate that, for the approach speeds normally used by present-day jet trans-

ports (above 130 knots), the longitudinal and lateral-directional characteristics were

acceptable. When the approach speed was lowered by the use of BLC, however, the pilot

ratings became steadily worse, and at the minimum approach speed of 80 knots, the

lateral-directional characteristics became unacceptable for IFR operation. As stated

previously, the steady deterioration of handling qualities as airspeed is reduced is an

inherent characteristic of STOL and V/STOL airplanes. Now, some of the specific

reasons for the marked loss of acceptable flying characteristics will be examined.

Longitudinal stability and control.- The degradation of longitudinal stability was

related primarily to pitch attitude requirements and trim changes in ground effect..

Illustrated in figure 8 are test results showing the pitch attitude during approach for the

basic airplane and for the airplane with BLC. The shaded area indicates the desired

pitch attitude range for operation of the airplane whereas the vertical dashed lines repre-

sent physical limits on touchdown attitude. Within the shaded area the airp]sn_ wnu]d

not touch down nose wheel first nor tail skid first during the landing flare. It can be seen

that the pitch attitude varied from slightly high for the basic airplane to too low for the

powered-lift airplane. During the approach and landing, the combination of flap setting

and power condition used resulted in a nose-down ....._*tit,,d-. and cvn.e.n,,_ ," that the airplane

would touch down nose wheel first.



During powered-lift operation, the airplane exhibited large nose-downpitching
momentsas it neared touchdown. As shownin figure 9, this characteristic required con-
siderably larger elevator deflections during the landing flare for the powered-lift air-
plane than those required for the basic airplane. The large trim changeincreased the
pilot workload considerably. The trim changeexperiencedin groundeffect appears to
be related to a large changein downwashangleat the tail in groundeffect. Becauseof
the relatively large anglesof downwashassociatedwith slow-speedflight at high lift
coefficients, this characteristic will probably be an inherent problem with this type of
airplane.

It shouldalso be mentionedthat the powered-lift airplane was flown on the back
side,of the power required curve, but the amountof speedinstability was not sufficient
to causemajor adverse pilot comment.

Lateral-directional stability and control.- The two primary reasons for the unac-

ceptable lateral-directional characteristics at low speeds were lack of adequate lateral-

directional damping and problems of turn coordination. Shown in figure 10 are the vari-

ations of the damping characteristics of the classical roll and Dutch roll modes with

approach speed. Values of the roll mode time constant greater than 1 second are con-

sidered to be excessive and indicative of low roll damping. Negative values of the Dutch

roll damping ratio are indicative of unstable lateral-directional oscillations. The data

indicate that as the approach speed was reduced, the damping of the roll mode and the

Dutch roll mode was correspondingly reduced and that the Dutch roll oscillation actu-

ally became unstable at an approach speed of about 108 knots. This instability was

caused by a combination of excessive dihedral effect and the nose-down attitude during

approach. As might be expected, the unstable Dutch roll mode was found to be very

troublesome and considerably degraded the lateral-directional handling characteristics.

The second major lateral-directional problem, related to what pilots call "turn coordi-

nation," is illustrated in figure 11 which shows the variation with airspeed of the direc-

tional stability (in terms of the Dutch roll frequency) and the ratio of sideslip angle to

bank angle for rudder-fixed turns. Poor turn coordination generally accompanies low

leveJs of directional stability because large values of sideslip will be generated in rudder

fixed turn entries. The ratio Afl/_cp is therefore usually used as a measure of turn

coordination. The data of figure 11 show that the test airplane at 80 knots had a value

of h_/_O of about 0.8; that is, for a rudder-fixed bank angle of 10 ° during a turn, a

peak sideslip angle of 8° was developed. Previous research and flight test studies have

shown that when ,_fl/_dp is above about 0.3, turn coordination will be a problem.

Effects of stability augmentation.- Much effort was directed at improving the

lateral-directional problem areas and relieving the pilot of a major portion of his work-

load during powered-lift operation. Most of this work was concerned with development

of adequate forms of stabUity augmentation and automatic speed control. A block diagram

10



of the stability-augmentation system usedis shownin figure 12. The augmentationsys-
tem consistedof a sideslip rate damper, a turn coordinationprogramer, and a roll decou-
pler which were connectedin parallel to the rudder. The sideslip rate damper, commonly
knownas a /} (sideslip rate) damper, consisted of a vane under the nose of the airplane

to produce an electronic signal proportional to sideslip angle and an electronic differen-

tiator to operate on the sideslip signal to produce a signal proportional to ft. The elec-

tronic output of the differentiator was then used to drive the rudder in proportion to fl,

the end product of the unit being the creation of an artificial stability derivative Cn/}
(rate of change in yawing moment coefficient with time derivative of sideslip). The turn

coordination programer consisted of an interconnect between aileron deflection and rud-

der deflection. With this type of mechanization, it was possible to change artificially the

value and direction of the yawing moment due to aileron deflection Cn5 a. The roll

decoupler consisted of a roll rate gyro, the output of which was used to deflect the rudder;

with this device, it was possible to vary the magnitude and direction of the yawing moment

due to roll rate Cnp. The effects of the entire stability-augmentation system on the

lateral-directional dynamic motions of the airplane are illustrated in figures 13 and 14.

Shown in figure 13 are time histories of the control-fixed airplane roll rate fol-

lowing a disturbance for the basic airplane, the powered-lift airplane, and the powered-

lift airplane with the Cn_ damper operating. The time histories show that the Dutch

roll oscillation was lightly damped for the basic airplane and unstable for the airplane

with BLC. Incorporation of the Cn/} damper, however, increased the damping of the
Dutch roll markedly. As might be expected, the pilot rating of the lateral-directional

characteristics improved considerably with the Cn_ damper. It might also be expected

that variations of any stability derivative such as the damping-in-yaw Cnr to produce

a stable Dutch roll mode would accomplish the gains afforded by the addition of sideslip

rate damping. Research has shown, however, that fl damping is more versatile than

yaw rate damping for control of sideslip on STOL airplanes. The response of the air-

plane to a conventional yaw damper and to a _ damper differs because of the different

sense of the yawing moment applied by the two stability augmentation systems during

turn entries. In the _ case, as the airplane banks and moves laterally due to bank

angle, the positive yawing moment due to _ damping is in the direction of the turn,

while the moment due to a yaw damper is in a direction opposite to the turn. As a result,

the peak sideslip angle generated by the turn is reduced considerably and a steady-state

turn rate is built up more rapidly with a fl damper in comparison with a conventional

yaw damper.

The effects of the _ damper, turn coordination programer, and roll decoupler on

turn entry characteristics are presented in figure 14, which shows the angle of sideslip

11



generatedin turn entries for the powered-lift airplane with and without stability augmen-

tation. As illustrated by the time histories, the powered-lift airplane without augmenta-

tion had undesirably large amounts of adverse sideslip during turn entries. It can be

seen that the adverse sideslip combined with the positive effective dihedral to change the

sense of roll rate (roll reversal) even though the pilot held the roll control. With the

stability-augmentation system in operation, the adverse sideslip was essentially elimi-

nated and there was no tendency toward roll reversal.

During the course of the study, the effects of an automatic speed control were also

evaluated in an effort to reduce the pilot workload required during powered-lift operation.

The automatic speed system compared the airspeed to a reference speed selected by the

pilot and automatically manipulated the thrust modulation to obtain the desired reference

speed. The effect of automatic speed operation of pilot workload during approaches is

illustrated in figure 15, which shows plots of approach speed and wheel position with auto-

speed inoperative and operative. The use of automatic speed control provided a marked

improvement in flying qualities. This improvement shows up in figure 15 in two ways:

First, the airspeed deviation from the desired reference speed is seen to be much less

with the automatic speed control in operation. Second, the lateral-control wheel inputs

indicate that the pilot was using smaller control inputs when flying with automatic speed

control. As a result of the reduced workload, the pilot could pay more attention to pre-

cise control of the flight path during the approach.

The improvement in handling qualities realized with lateral-directional augmenta-

tion of the powered-lift airplane is shown in figure 16. The pilot ratings of the unaug-

mented airplane are those previously presented in figure 7. The addition of stability

augmentation improved the flying characteristics to the point that satisfactory ratings of

3 to 31 were obtained at 80 knots.

These flight tests with a BLC-equipped jet transport have illustrated some of the

stability and control problem areas common to most STOL airplanes. The principal sta-

bility and control problem areas appear to be lateral-directional in nature and consist of

inadequate lateral-directional damping and poor turn coordination characteristics. If

these problems are to be minimized, most STOL airplanes will require stability augmen-

tation in the form of sideslip-rate damping, rudder-aileron interconnect, and artificial

variation of yaw due to rate of roll.

Current Status of STOL Airplanes

As previously pointed out, the most significant driving force behind the development

of STOL airplanes has been the desire to improve the airway system of the nation by

relieving the congestion problem. A number of so-called "shuttle" flights have been

introduced at some of the larger airports to serve a portion of the short-haul traffic

12



demand. These flightsare usually conducted with small, lightairplanes having extremely

limited passenger capabilities. At thistime a true STOL transport is not operational,

although progress is being made to the extent thatmany of the major airlines are issuing

requirements for an STOL airplane. In particular,two major U.S. airlines have recently

conducted an evaluation of STOL intra-cityoperations using the Breguet 941 airplane

shown in figure 17. The Breguet 941 is an unpressurized transport utilizingthe

deflected-slipstream STOL technique. In this system the slipstream of the four pro-

pellets blows over the entire span of the wing which is equipped with extensive slotted

flaps. The four engines are interconnected with shafting so that allpropellers will con-

tinue to rotate in event of an engine failure. The airplane also incorporates a number'of

interconnect features between control surfaces so as to minimize trim changes and

adverse yaw during STOL operation. Although not as large as desired, the airplane pro-

vided the airlineswith an existing design by which they might evaluate the STOL system

concept. In effectthe tests conducted were made in crowded terminal areas such as the

New York-Boston-Washlngton triangle in an effortto determine whatever STOL traffic

could be segregated out from regular airway and terminal area users. The results of

the evaluation were promising, and one of the significanteffectshas been to set in motion

in-house design studies by the major airlinesRimed at formulating specificationswhich

they consider to be practical for an STOL transport. A cross section of the major air-

lines indicates an STOL transport must meet the following specifications:

(1)A seating capacity of 100 to 200 passengers

(2)Cruising speed of about 320 knots

(3)Maximum range of 500 nautical miles

In addition,the vehicle must be capable of operation from a 1500-foot (457-meter)

runway with climb-out angle and approach angle of 7° to 10°. Current demands indicate

such an airplane would enter operational service in thisdecade.

Future STOL Concepts

Several concepts are being developed to meet these specifications,and itappears

that a jet-powered STOL airplane may be one ofthe leading candidates. One particular

concept receiving considerable research attentionis the external-flow jet-flapconcept.

An airplane using this system might resemble a conventional jet transport with podded

engines. As shown in fia_ure18_ however_ the jetengines are inclined slightlydownward

so that the exhaust from the engines impinges on a trailing-edge flap system. This

arrangement results in a considerable increase inthe circulationabout the wing and large

increases in lift. Although this configuration appears promising from performance con-

siderations, a nthmber of stabilityand control problems are ir_erent in this concept.

First, the large downwash associated with the high liftcoefficientsstrongly influences

13



the geometric design of the airplane. As shown in figure 19, the horizontal tail must be

sufficiently removed from the downwash field to remain effective and ensure stability at

low speeds.

The provision of adequate control power to maneuver the airplane is also a serious

problem on this design. Obviously, as the minimum operational airspeed is reduced to

zero, a point is reached at which unorthodox control systems, such as boundary-layer

control on control surfaces and reaction jet controls, must be used.

The last and perhaps most important problem of the jet-flap concept is the provi-

sion of adequate control to cope with an engine-out condition. Without mechanical inter-

connect, loss of an engine on this type of airplane would pose a serious trim problem in

roll and yaw which may be catastrophic.

In addition to the stability and control problems unique to the jet-flap system, it

should be kept in mind that this configuration is subject to the problems discussed earlier

for the BLC transport and therefore requires an artificial stabilization system.

STABILITY AND CONTROL CHARACTERISTICS OF V/STOL AIRPLANES

The information presented in the previous section provided an insight as to the

stability and control characteristics of airplanes as the approach and landing speed is

reduced. This part of the paper extends the airspeed region of interest down to hovering

flight by a discussion of the stability and control characteristics of V/STOL airplanes

which employ several different propulsive concepts to achieve vertical take-offs and

landings.

Performance of V/STOL Airplanes

Over the last decade a bewildering array of various types of V/STOL airplanes has

been proposed. Some of these concepts are shown in figure 20. The various types of

V/STOL vehicles might logically be classified by the propulsive concept which powers

the machine; for example, concepts powered by rotors, propellers, ducted fans, and

turbojets. In addition, the various concepts can be grouped according to the method by

which they perform the transition to forward flight. For example, the aircraft tilting

types use pitch attitude changes, the thrust-tilting vehicles rotate the propulsion units,

the thrust-deflection types deflect or rotate the slipstream of the propulsion unit, and

dual-propulsion types use two separate power units for vertical take-off and for cruise.

With such a large number of designs available, the question naturally arises as to which

concept is best. A considerable amount of research and development has therefore been

directed at answering this question. The result of this research indicates that no one

design is best, but the various types have different applications depending on the type of
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V/STOL mission under consideration. To illustrate this point, consider two phasesof a
typical V/STOL mission - the hovering phaseandthe cruise phase. Two important fac-
tors which govern to a large extent the hovering capability of a V//STOLairplane are
shownin figure 21. Plotted in figure 21 is the variation with propeller diameter of the
amount of power required to hover. The first important point to be notedis that the
amountof power required for the airplane of a givenweight to hover decreasesmarkedly
as the diameter of the lifting element increases. This power decrease results from the
fact that for a given value of thrust to be produced,a large-diameter propeller must take

a relatively large mass of air at rest and impart a relatively small inducedvelocity vi
to the air, whereas a small-diameter propeller producesthis value of thrust by acceler-
ating a relatively small mass of air andimparting a large velocity to the air. Inasmuch
as the power required is proportional to the inducedvelocity, the power required for
small-diameter lifting elements is extremely high. Of course, the large amountof power
required also results in large fuel consumption for hovering flight. The second impor-

tant factor to note in figure 21 is that smaller lifting elements tend to have high-velocity

slipstreams, which may pose a problem with respect to ground erosion, foreign object

ingestion, and injury to ground-based personnel.

The results of this analysis of hovering capability are shown in figure 22, which

presents a plot of hovering efficiency (which may be thought of as thrust produced for a

given power input) and slipstream velocities for several V/STOL concepts. As can be

seen, the large-diameter lifting element (rotor) is easily the most advantageous choice

for a V/STOL airplane if the mission calls for a great deal of hover time. The least

efficient design is the turbojet for the reasons previously discussed, and hovering time

with this type of machine must be kept to an absolute minimum. In summary, the analy-

sis of performance characteristics in hovering flight indicates that a rotor-powered

machine or helicopter is best suited for a mission involving hovering flight of long
duration.

An analysis of the cruise portion of the V/STOL mission is now considered. Shown

in figure 23 is the variation of power required with forward speed for a helicopter and a

propeller-driven V/STOL transport of the same weight. Note that at a forward speed of

zero, or hovering flight, the helicopter requires far less power than the propeller design

for reasons pre_J0usly discussed. As the forward speed is increased, however, the heli-

copter experiences a sharp rise in power required due to compressibility and stall effects

on the rotor blades while the propeller-driven transport requires far less power. A jet-

powered design would show an even greater speed advantage over that of the helicopter.

This characteristic increase in power required for the helicopter places severe restric-

tions on the maximum speed capability of the helicopter and results in consideration of

other V/STOL concepts for missions involving high cruise speeds.
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Theresults of ananalysis of the applications of various V/STOL conceptsis shown
in figure 24,which showsa plot of hovering capability and cruising speedfor several
concepts. Note that the helicopter has the greatest hovering capability andthe lowest
cruising speed,whereas the turbojet-powered design has the greatest cruising speedwith
little hovering capability. Note also that a variety of V/STOL conceptshavecapabilities
within these two extremes.

This paper now considers the stability and control characteristics of three of the
most promising V/STOL concepts: the propeller-driven tilt-wing airplane, the ducted-
propeller or tilt-duct airplane, and the jet-powered V/STOL airplane.

Tilt-Wing V/STOL Airplane

If cruise speedsof about400knots, or less, are acceptable,the tilt-wing propeller-
driven V/STOL airplane canbeused to great advantage. Over 60years of development
have beendevotedto making the conventionalairplane configuration anefficient cruising
vehicle, andthe tilt-wing conceptaddsVTOL capability to it with a minimum of
compromise.

An exampleof the tilt-wing design is shownin figure 25. This designutilizes the
deflected slipstream andtilting-wing conceptsto avoid wing stall during the transition to
forward flight. The airplane emplGysfull-span double-slotted flaps to deflect the slip-
stream producedby 15-foot-diameter (5-meter-diameter) propellers. The total immer-
sion of eachwing semispan in the propeller slipstreams together with interconnectedpro-
pellers is similar to the Breguet 941,but the tilt-wing design producesVTOL capability.
An 8-foot-diameter (2.44-meter-diameter) tail rotor is provided for pitch control.

Becauseof extensive wind-tunnel andflight research anddevelopment,the
propeller-powered V//STOLairplane represents a more advancedstate of development
than anyother class except the helicopter. Sincethis type of V//STOLairplane is effec-
tively a conventionalpropeller-drive_l airplane in cruising flight, it displays, for all
practical purposes, nonew stability and control problems in this flight regime. It does,
however,exhibit a number of unconventionalstability and control characteristics in
hovering, transition, and STOLflight.

Stability and control in hovering.- As pointed out previously, in hovering flight the

conventional aerodynamic control surfaces of V/STOL airplanes usually become ineffec-

tive. As a result, most V/STOL designs use separate control systems for hovering and

conventional flight. The tilt-wing airplane is a typical example of a design employing a

dual control system. Roll control for hovering flight is usually provided at little expense

of airplane performance by differential variation of the blade angles of the right and left

propellers. This type of control system produces a very powerful control which is

usually more than adequate in terms of angular acceleration capability. Yaw control in
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hovering flight is normally provided by differential deflection of ailerons located in the

propeller slipstream. The ailerons are the sole aerodynamic control surfaces which do

not totally lose all effectiveness in hover due to the high velocities in the propeller slip-

stream. Provision of adequate yaw control capability has proven to be somewhat trouble-

some in the past and has led to use of large aileron deflections to meet minimum control

requirements. When hovering in ground effect, the ailerons also tend to lose effective-

ness as shown in figure 26. This figure shows a plot of aileron effectiveness relative to

effectiveness out of ground effect for various values of hiD. The data show that the

ailerons lose almost one-half their effectiveness in ground effect as the airplane nears

touchdown. This loss in yaw control effectiveness is caused by the fact that the propeller

slipstream spreads as it approaches the ground, and the ailerons are less effective in

turning the larger slipstream. Pitch control for the tilt-wing airplane in hovering flight

is not obtained without significant penalties in terms of weight, performance, and mechan-

ical complexity. Designers have, in the past, favored tail propellers or fans for pitch

control on present-day tilt-wing designs.

Perhaps the most outstanding stability characteristics displayed by tilt-wing air-

planes in hovering flight are dynamically unstable oscillations about the roll and pitch

axes. Typical examples of these unstable oscillations are presented in figure 27. The

data shown were obtained during hovering flights of a model of a four-propeller tilt-wing

vehicle. Time histories are presented of control-fixed motions obtained separately in

pitch and roll. The oscillations are very unstable, but the periods are relatively long and

the unstable motions can be easily controlled by a pilot under visual flight conditions.

The airplane would, however, be uncontrollable under instrument flight conditions without

artificial stabilization. These unstable oscillations are typical of V/STOL vehicles

employing rotors or propellers. In fact, unstable oscillations similar to these are exhib-

ited by most present-day helicopters.

Dynamic analysis of the unstable oscillatory modes of hovering flight has pointed

out the cause and possible remedies for the instabilities. A unique aspect of static sta-

bility that is important for most V/STOL airplanes is normally referred to as velocity

stability - that is, the variation of pitching moment with airspeed at constant angle of

attack and power. This characteristic is illustrated in figure 28, which shows typical

variations of nondimenslonal pitching-moment coefficient C m with airspeed for a con-

ventional airplane and for a V/STOL airplane. For constant values of power and angle

of attack, the value of Cm is constant with airspeed for the conventional airplane with

the exception of flight in the transonic speed range. On the other hand, the V/STOL air-

plane typically exhibits large nose-up variations of C m with airspeed. Although this

variation of moment with airspeed is statically stabilizing, excessive magnitudes can

cause handling problems in gusty air and, in addition, -.v_o_,,o o,_oa _o_,_i_ ..... _..4_,

utes to the dynamically unstable oscillations of hovering flight.
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The linearized longitudinal equations of motion for a V/STOL airplane in hovering

flight are as follows:

Vertical force:

-FZuU + (s- FZw)W - FZqS0 = 0
(1)

Longitudinal force:

s- FXu)U- FXwW 0

Pitching moment:

u 0
The values of the stability derivatives underlined in the equations of motion are normally

negligible for V/STOL vehicles in hovering flight. As a result of the elimination of sev-

eral stability derivatives, the characteristic equation describing the dynamic stability of

the airplane becomes

s - - +FZ w

One root of the characteristic equation is immediately known and is equal in magnitude

to the vertical-velocity damping derivative FZw. The mode of motion described by this

root is the convergence of the vertical motion of the vehicle to disturbances, in other

words, the "heave" stability of the airplane in hovering flight. The remaining cubic

equation in the brackets defines fore and aft and pitch stability of the airplane.

Typical solutions to the characteristic equation are shown in figure 29, which shows

the four roots of the complete characteristic equation (4) plotted on the complex plane.

Roots having positive real parts denote dynamically unstable modes of motion; therefore,

the entire right half of the complex plane is associated with dynamic instability. The

root at the origin is the real root equal to FZw , which for simplicity in this case is

assumed equal to zero. The solutions of the cubic equation usually consist of (1) a large

negative real root describing a convergence of pitch and horizontal velocity displace-

ments and (2) a complex pair with a positive real part describing the typical unstable

oscillation involving pitch and horizontal translation. It may be shown mathematically

that the unstable oscillation is brought about by excessive speed stability and lack of suf-

ficient values of aerodynamic damping in pitch.
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Stability-augmentation systems for hovering flightnormally consist of both pitch-

rate and pitch-attitudestabilization. The variations of the complex roots describing the

unstable oscillationwith these forms of stabilityaugmentation are shown in figure 30.

Presented in figure 30 are the effectsof pitch-rate augmentation Myq and pitch-attitude

augmentation My0 on the unstable pitch oscillationfor a four-propeller tilt-wingair-
/M. \

plane in hovering flight. When only pitch-rate augmentation is used { I0 _ 0),the path\Myq /

of the roots indicatesthat the oscillationcan be made dynamically stable ifthe augmenta-

tion system gain is increased sufficiently. Large increases in damping in pitch,how-

ever, tend to decrease the effectiveness of the pitch control. In addition,a significant

part of the pilotworkload would stillbe devoted to attitudecontrol. Addition of pitch-
/4, \

attitudestabilizationwithout rate augmentation (_uYe = ooimakes the oscillationless

/
unstable, but the major effect is an undesirable increase in the frequency of the oscilla-

tion. When rate and attitude stabilization are used simultaneously, almost any desired

level of stability can be achieved with significant improvements in handling qualities,

particularly in gusty air.

Although the preceding discussion emphasized dynamic characteristics of a tilt-

wing airplane about the pitch axis in hovering flight, it should be pointed out that a simi-

lar situation exists about the roll axis. Consequently, tilt-wing vehicles will normally

require roll-rate and roll-attitude stability augmentation for satisfactory handling char-

acteristics in hovering flight.

Another unique characteristic of V/STOL airplanes is ground effect on lift and sta-

bility in hovering flight. The general character of the flow pattern around a tilt-wing

airplane when hovering near the ground is shown in figure 31. The propeller slipstreams

tend to spread out radially as they impinge on the ground, and as they meet in the plane

of symmetry they tend to flow upward and may produce a positive, or lifting, pressure

increment on the bottom of the fuselage. Presented in figure 32 are representative values

of increases in lift due to ground effect. The ratio of lift in ground effect to lift out of

ground effect (L/L_) is plotted in figure 32 as a function of the distance between the bot-

tom of the fuselage and the ground in terms of propeller-diameter lengths (h/D). The

additional lift in ground effect is due to a combination of positive pressure increments on

the bottom of the fuselage and the well-known increase of propeller thrust in ground

effect.

Stability and control in transition.- As forward speed is increased and the transi-

tion to conventional flight has begun, the conventional aerodynamic control surfaces begin

to regain effectiveness. _..v,,o,..,_.,.,._j+1-,tilt-wingvehicles ,,_,,_Uyincorporate __form of
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control-mixing mechanism which progressively changes the control functions so that the

ailerons, rudder, and elevator become the primary controls at higher speeds.

When forward speed is increased, the aerodynamic pitching moment acting on the

airplane becomes a function of the airplane angle of attack. The variation of pitching

moment per degree angle of attack with airspeed is shown in figure 33 for several differ-

ent propeller-driven V/STOL configurations. Positive values of the parameter -Mya

represent a stable condition, whereas negative values represent an unstable condition.

These data show that all configurations tend to be unstable at low speeds and become

stable at higher forward speeds as the airplane approaches conventional flight conditions.

As mentioned previously, the speed stability derivative MYu tends to have positive
(stable) values in the transition flight range. The overall static stability of the airplane

is composed of the contributions of both the stabilizing Myu and the destabilizing Mya.

The root-locus sketch in figure 34 shows a typical variation of longitudinal-stability

characteristics as forward speed is increased. The solid symbols represent the stability

roots for hovering flight, and the open symbols denote the roots for cruising flight. The

unstable oscillation in hovering flight becomes less unstable with lower frequency as air-

speed is increased until, in cruising flight, it becomes the conventional long-period phu-

gold oscillation. The two stable real roots of hovering flight combine as airspeed is

increased to form the classical short-period oscillation displayed by a conventional

airplane.

The variation of dynamic longitudinal stability as airspeed is increased is further

illustrated in figure 35, which shows time histories of pitching velocity obtained during

flight tests of a tilt-wing airplane following pulse inputs at various wing-tilt angles iw

corresponding to several values of forward speed. The data for 85 ° wing incidence indi-

cate that the airplane displayed the unstable oscillation previously discussed. At a wing

incidence of 40 ° , the oscillation became dynamically stable, and as the wing incidence

was reduced further (airspeed was increased), the pitching-velocity time history is indica-

tive of the conventional highly damped short-period oscillation. Because the airplane

becomes dynamically stable as forward speed is increased, it is obvious that the need for

artificial stability augmentation diminishes as cruising flight is approached. It has

become normal practice, therefore, to program the gains of the stability-augmentation

system with wing-incidence angle in such fashion that the system gains are reduced during

the transition and are finally eliminated at high speeds.

Similar variations of lateral-directional stability with increasing airspeed are nor-

really encountered, resulting in programed variation of the lateral-directional stability-

augmentation system.

Stability and control characteristics in STOL flight.- A tilt-wing V/STOL airplane,

when operating at low airspeeds near the ground, can run into some of its own propeller
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_lipstream which has beendeflected forward. As illustrated in figure 36, the deflection
_f the propeller slipstream by the groundcreates aturbulent region throughwhich the
_irplane must fly. Impingementof the turbulence on the airframe in anunsymmetrical
nanner results in large values of yawingacceleration. At the left in the figure is plot-
:edthe yaw acceleration for wing incidence anglesbetween30° and 80° corresponding to
.andingspeedsup to 40knots. The opensymbols denoteaccelerations measured in actual
flight tests of a tilt-wing airplane. The solid symbol represents the maximum yawaccel-
9ration capability of the airplane control system in hovering flight. Obviously, this area
_f operation is potentially dangerousand shouldbeavoided if at all possible. Actually,
:his phenomenonwas encounteredby an XC-142 airplane during a landing at about
20knots. The airplane sustainedconsiderable damagewhencontrol was lost and one
7ringtip struck the ground.

Other stability and control problems of tilt-wing V/STOL airplanes during STOL
_peration are related to wing stall, particularly in descendingflight at partial power.
l_hisarea of difficulty is discussed in a subsequentsection of this paper.

In summary, the tilt-wing V/STOL airplane exhibits stability andcontrol character-
[stics similar to present-day propeller-driven airplanes in cruising flight. It does,how-
_ver, exhibit several undesirable stability andcontrol characteristics at low airspeeds
_¢hichcanbe alleviated by use of artificial stabilization equipment. The technology
required to solve the stability and control problems of the tilt-wing vehicle is well in

hand and it presently represents the most advanced V/STOL concept.

Tilt-Duct V/STOL Airplane

A number of V/STOL designs powered by tilting ducted propellers have been eval-

uated as potential candidates for the long-range V/STOL mission in competition with the

Lilt-wing designs. In competition with the propeller, the ducted propeller offers the

advantages of compactness and the possibility of increased static thrust efficiency. As

shown in figure 37, the addition of a shroud around a conventional propeller prevents con-

Lraction of the propeller slipstream. Preventing contraction of the slipstream permits

Lhe ducted propeller to produce the same slipstream cross-sectional area as that pro-

duced by a conventional propeller of larger physical dimensions. In fact, for a given

amount of power a ducted propeller will produce the same amount of thrust as a conven-

tional propeller having a diameter 1.4 times as large as the duct exit. The ducted pro-

peller is therefore a relatively compact propulsion unit. In addition, the duct walls pro-

duce a beneficial end-plate effect which reduces the blade-tip losses experienced by

unshrouded propellers.
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The advantagesof the ducted fan are producedat the expenseof the addedweight
and complexity of the duct andthe performance losses in cruising flight associatedwith
the extra drag of the duct.

An exampleof a tilt-duct V/STOL airplane is the X-22A transport shownin fig-
ure 38. Tandemtilt-duct configurations suchas this oneare poweredby four ducted
propellers arranged in pairs fore and aft. The tandem layout offers several advantages
in control-system simplicity and results in a compactairplane that might be particularly
suitable for shipboardor carrier-based operations. Thetandem tilt-duct airplane has
received a significant amountof research and development,andits stability and control
characteristics havebecomefairly well documented. The tilt-duct design hasbeenfound
to have manyof the stability and control characteristics exhibited by tilt-wing designs in
hovering, transition, and STOL flight. In addition, however, the fact that the tilt-duct
vehicle doesnot resemble a conventionalairplane during cruising flight producesaddi-
tional stability and control problems as airspeed is increased. Most of these problems
are related to the aerodynamiccharacteristics of the ducted propeller.

Oneof the fundamental characteristics of ductedpropellers, as shownin figure 39,
is that theyproducea high drag in a side wind or crossflow. This characteristic results
from the fact that whena ducted propeller moveshorizontally, it must turn the air 90°
downthroughthe duct. A drag force is therefore producedwhich is equal in magnitude
to the product of the mass flow of air through the propeller per secondtimes the velocity
of the crosswind. As canbe seenin figure 39, the drag force producedby a ducted-
propeller arrangement is muchgreater than that producedby anunshroudedpropeller
since the air cango throughthe free propeller at a relatively small deflection angle
rather thanat 90°. Obviously, a V/STOL configuration employing ductedpropellers will
be muchmore responsive to atmospheric gusts. If the inlets of the ducts are displaced

from the center of gravity of the airplane, the forces generated normal to the inlet can

produce sizable moments - for example, yawing moments in response to side gusts

and pitching moments in response to head winds.

Another characteristic of ducted propellers, as shown in figure 40, is the develop-

ment of large moments about an axis perpendicular to the duct center line when subjected

to side winds. The moments are produced primarily by an effective change in the locatio

of the thrust vector relative to the propeller shaft of such magnitude that greater lift is

produced on the upwind lip of the duct than on the downwind lip. These moments are muc

greater for a ducted propeller than for a free propeller as shown by the test data at the

bottom of the figure. It can therefore be rationalized that ducted-propeller airplanes wii

exhibit large values of the speed stability derivative MYu due to the preceding aerody-
namic characteristics.

Stability and control in hovering flight.- The general arrangement of the tandem

ducted-propeller airplane results in powerful controls for roll and pitch by differential
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changesin the pitch angle of the ductedpropellers. Yaw control in hovering flight is
provided by elevonsmountedat the duct exit so that they are in the high-velocity propel-
ler slipstream. Whenhovering in groundeffect, thetandem configuration experiences
the increase in lift and decrease in yaw control effectivenesspreviously discussedfor
the tilt-wing V/STOL airplane. As shownin figure 41, a typical configuration may expe-
rience a 20-percent increase in lift at touchdown. The data of figure 42 showthat a
decreaseof about 40percent in yaw control effectivenessoccurred near the ground.
This decrease in elevoneffectiveness is partly explainedby the decrease in thrust
required in groundeffect as shownin figure 41.

Whenhovering out of groundeffect, the tilt-duct configuration experiences unstable
pitch and roll oscillations similar to those discussedfor tilt-wing airplanes in figure 32.
The periods of the oscillations are long enoughto be controllable by the pilot in visual
flight, but artificial stabilization similar to the systems discussed for the tilt-wing air-

plane will be required to stabilize the oscillations for satisfactory all-weather operation.

As might be expected, the airplane will be neutrally stable with respect to yaw displace-

ment in hovering flight.

As the tilt-duct vehicle nears the ground, the slipstream impingement on the bottom

of the fuselage produces natural variations of pitching and rolling moments with attitude

as illustrated in figure 43. Plotted in figure 43 are the variations with distance above

the ground of the pitching moment due to pitch attitude My0 and rolling moment due to

roll attitude MXq 5. It can be seen that the positive values of MX_ b produced in ground
effect are statically unstable - that is, banking to right produces a rolling moment

tending to further increase the bank angle. Because the tandem configuration is unsym-

metrical within the plane of symmetry, the pitch attitude stability produced in ground

effect is different for nose-up or nose-down attitucies.

During flight tests of model and full-scale tilt-duct airplanes, considerable difficulty

has been experienced trying to control the airplane when hovering in ground effect. The

moment changes brought about in ground effect, particularly the bank instability, may

have contributed to the problems, but it is believed that the principal difficulty is caused

by erratic disturbances produced by the random recirculation of the propeller slip-

streams. Near the ground, the propeller slipstreams meet and form a strong upward

flow between the fore and aft ducts that tends to flow erratically into one fan or another.

These disturbances cause a considerable increase in pilot workload in hovering flight

near the ground for a vehicle without artificial stability augmentation.

Stability and control in transition.- As the ducted propellers are tilted forward and

the airplane begins to pick up speed, a control-system mixing unit varies the functions

of the elevons so that roll and pitch control at high speeds are provided by differential

elevon deflections, whereas yaw control is provided by differential propeller thrust.
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As thetransition to forward flight progresses, the large drag and momentsgener-
atedby theducted propellers produce large longitudinal trim changesas illustrated by
the data of figure 44. Plotted in figure 44 is the variation with airspeed of untrimmed
pitching momentin terms of angular acceleration aboutthe pitch axis. Thesedata indi-
cate that large nose-uppitching momentsare generatedand reach a peakvalue of about
1 radian/sec2 midwaythrough the transition to cruising flight. For a typical design, the
margin betweenthe trim requirement shownin figure 44 andthe pitch control available
may becomecritical in terms of excess control available for maneuveringrequirements.
The trim requirement canbe reducedby differential deflection of the front and rear
ducts; for example, reducing the incidence of the front ducts by 10° relative to the rear-
duct incidenceangle may reduce the trim requirement to abouthalf the value obtained
without differential deflection of the ducts. The dynamic longitudinal stability of the tilt-
duct vehicle hasbeenfoundto changefrom unstableoscillations in hovering flight to the
classical phugoidand short-period oscillations in a manner similar to that of the tilt-
wing airplane.

Studiesof the lateral-directional stability characteristics of tandem tilt-duct vehi-
cles haveindicated several stability and control problem areas at high transition speeds.
For example, shownin figure 45 are typical variations of yawing-moment coefficient Cn
and rolling-moment coefficient C1 with sideslip angle for a high-speed flight condition.

The variation of Cn with angle of sideslip is stable --(Cn/_ positive) but is typically low

in magnitude. The airplane also exhibits positive effective dihedral _(Clfl negative) and

the magnitude of Cl_ is typically large - on the order of 3 to 4 times as large as Cn_.
These characteristics tend to produce Dutch roll problems in cruising flight. Free-flight

tests of a tandem tilt-duct model in the transition speed range have indeed exhibited

Dutch roll oscillations that were unstable in the low-speed range and were still lightly

damped to relatively high speeds corresponding to a duct angle of about 20 °. During the

course of the study, artificial stabilization supplied by a conventional yaw rate damper

was found to be sufficient to stabilize the Dutch roll oscillation and eliminate this problem.

The free-flight model had another characteristic which contributed to poor lateral-

directional behavior. The test results indicated that the model was experiencing stall on

the upper outside surfaces of the ducts over a fairly large range of level-flight conditions

for duct angles from about 60 ° to 20 ° . At the higher duct angles in this range (about 60 °

to 30o), the resultant disturbances to the model were small, because of the low airspeeds,

and were experienced mostly in yaw. At the lower duct angles (about 30 ° to 20°), the

dynamic input of the disturbances due to stalling was larger because of the higher dynamic

pressure and was mostly about the roll axis because of the low duct angles. In these

cases, the model experienced erratic and very objectionable rolling motions or wing

dropping:

A series of tuft studies made with the model showed that, in some flight conditions,

there was intermittent, erratic stalling of the upper surfaces of the ducts, and that over

24



anangle-of-attack range, theseduct upper surfaces did not stall symmetrically. It was
found in these tests that there was an intermittent stall condition oneach duct surface so
that at a given test condition there might be anunstalled duct, an intermittently stalling
duct, and a stalled duct on the model all at the sametime.

In an attempt to delay the stall of the duct upper surfaces, a set of leading-edge
slats were fitted to the model as shownin figure 46. Tuft tests, madewith the slats
mountedas shown, indicated that the slats delayed the stall to a fuselage angle of attack

of at least 10 ° for all duct incidence angles, and to angles of attack as much as 20 ° at

low duct-incidence angles where the disturbances due to the stalling had been the most

objectionable. With the slats mounted on the ducts, the model was again tested in flight

throughout the transition range. As expected, the model with slats did not experience

the erratic and objectionable rolling motions or wing dropping.

It should be noted that although the slats solved the wing dropping, the model still

had the Dutch roll tendency and artificial damping in yaw was still required for satisfac-

tory flight characteristics.

One additional area of concern during the high-speed flight of the tilt-duct airplane

is the rather large magnitude of lateral force produced by sideslip. In fact, as shown in

figure 47, the magnitude of the side-force-due-to-sideslip derivative --Cy_ for a duct
incidence of 15 ° is about 40 percent as large as the lift-curve slope C_L_ These data

indicate that the airplane would experience large lateral accelerations in gusty air. For

example, presented in figure 48 are the variations with airspeed lateral acceleration pro-

duced by a crosswind gust of 50 ft/sec (17 m/sec) for a tandem tilt-duct configuration

and a conventional subsonic jet transport. As can be seen, the tilt-duct vehicle would

experience lateral accelerations from about 0.6g to over 1.0g in this flight condition.

Because the pilot tolerance to lateral accelerations is known to be very low, the large

lateral accelerations shown in figure 48 suggest a critical problem area which will be

typical of tilt-duct V/STOL airplanes.

In summary, the tilt-duct V/STOL airplane exhibits stability and control character-

istics similar to those of most propeller-driven V/STOL designs in hovering flight. In

high-speed flight, however, the tilt-duct vehicle does not exhibit conventional stability and

control characteristics because of its unique physical layout. The significant stability

and control problems appear to be duct stall, which can be eliminated by flow-control

devices; unstable or lightly damped Dutch roll oscillations, which can be eliminated by

artificial stabilization; and undesirably high lateral response to gusts, which appears to

be an inherent characteristic of the design and is not easily solved.
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Jet V/STOL Airplanes

Whenthe requirements for a V/STOL mission call for supersonic capability, a jet-
powered V/STOL designbecomesnecessary. This type canbe designedto obtain low
volume andfrontal area andthereby to permit maximum speedpotential and is therefore
ideally suited for fighter or attack missions. A large amountof flight experiencewith
these airplanes has beenaccumulated. Thetwo jet conceptspresently under evaluation
are the lift-engine concept,which uses separate jet enginesfor hovering and cruising
flight andthe vectored-thrust conceptin which the thrust of a single jet engine is
deflected for hovering flight. Oneof the more advancedvectored-thrust V/STOL air-
planes is the P.1127fighter shownin figure 49. The operational version of this airplane
is the Harrier, and it has loggedmore V/STOL flight time thanany other designand is
currently in service.

The jet-powered configurations exhibit conventionalairplane flying qualities in
cruising flight. Unlike the tilt-wing andtilt-duct vehicles, the jet-powered designsare
not subject to unstableoscillations in hovering flight, but they do encountersomeunique
stability andcontrol problems in transition flight.

Stability and control in hovering.- The general layout of a high-speed configuration

does not permit the conventional aerodynamic control surfaces to be placed in high-

velocity slipstream as was the case for the ailerons of the tilt-wing airplane. Instead,

the jet machine is usually provided with a jet reaction control system. These usually

take the form of reaction jets in which the roll and pitch nozzles are located at the front,

rear, and wing tips of the airplane, and an additional nozzle facing sideways at the tail is

used for yaw control. High-pressure air bled from the engine compressor is ducted to

the control valves. The reaction controls are usually linked mechanically to the aerody-

namic control surfaces. When the control stick is moved to the right, for example, the

left aileron deflects downward and the reaction jet at the left wing tip is opened downward

to raise the wing.

It has been found that jet V/STOL airplanes do not exhibit the unstable oscillations

displayed by machines of lower disk loading in hovering flight. As a consequence, some

jet designs such as the P. 1127 have been flown without artificial stabilization under visual

flight rules (VFR) conditions. The lack of artificial stabilization does not, however, ease

the control burden during precise maneuvers or gusty air. Without artificial stabiliza-

tion, actuation of the jet reaction control system will result in roll acceleration rather

than the roll rate normally produced by a conventional-airplane aileron control.

The problems involved in achieving precise translational maneuvers with a jet

V/STOL airplane in hovering flight are illustrated in figure 50. Presented in figure 50

are time histories of the lateral control inputs required to produce roll rate and bank

angle for a conventional airplane and a jet V/STOL airplane in hovering flight. When the
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pilot of a conventionalairplane applies lateral control, the rolling momentproducedby
the ailerons accelerates the airplane about its roll axis. As the roll rate increases, the
natural aerodynamicdampingmoment increases until it is equal andopposite to the
momentdueto aileron deflection. The airplane thenmaintains a steady rate of roll until
the pilot neutralizes the stick. Whenthe forcing momentof the ailerons is eliminated,
the aerodynamicdamping slows the airplane to a constantbank angle.

In contrast, the sketch on the right of figure 50showsthat if the pilot of the V/STOL
airplane in hovering flight applies lateral stick, the rolling momentscausedby the reac-
tion controls will also accelerate the airplane, but lack of natural aerodynamicdamping
results in an ever-increasing angleof roll unlessopposite roll control is given. The
control-input time history clearly illustrates that the pilot of the hovering jet V/STOL
airplane has more work to do andmore decisions to make for precise control during lat-
eral translations. Becauseof the considerable amountof pilot workload involved, some
form of stability augmentation- at least in the form of rate stabilization - will be
required for operational aircraft.

During hovering flight out of groundeffect, the P.1127has beennotedto have neu-
tral directional stability in still air. In the presenceof crosswinds, however, the air-
plane exhibited a tendencyto turn awayfrom the crosswind. This directional instability
is associatedwith the side force producedat the noseof the airplane, created by turning
a large mass flow of air into the engineinlets. As illustrated in figure 51, the side force
created at the noseis much larger than that createdby the vertical tail at low speeds.
Sincethe engineinlet is located somedistance forward of the center of gravity, a sizable
destabilizing yawingmoment is created. Under gusty conditions, or during turns away
from headwinds,control of the airplane canbecomecritical if large sideslip anglesare
p_oducedby Lheinstabiii_y.

Stability and control in transition.- The control system of the jet V/STOL airplane

is perhaps the simplest of all the V/STOL designs. As forward speed is increased, the

compressed air supply to the control jets is cut off, and the airplane uses conventional

surfaces for control.

During the transition to forward flight, the jet airplane may encounter serious sta-

bUity and control problems brought about by aerodynamic interference between the jet

wake and the free-stream air. The basic principle of jet interference is shown schemat-

ically in figure 52. The sketch shows the pressure distribution induced on the lower

fuselage and wings of a wing-body combination by a jet issuing perpendicular to the free-

stream flow. As the jet flows from the airplane, it changes from a cylindrical-type flow

to a kidney-shaped vortex field. The resulting pressure distribution consists of positive

pressures a_head of the jet and larger negative pressures behind the jet. The total pres-

sure distribution results in a net loss of lift and nose-up pitching moment. The effect of
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interference betweenthe free-stream and jet wake canaffect (1) the stability and control
characteristics of the basic wing-body combination, (2) the horizontal tail contribution to
stability, and(3) lateral stability and control characteristics.

Theeffect of jet interference on the lift andpitching-moment characteristics of a
wing-bodycombination is shownin figure 53. Nondimensionalpitching momentandlift
are plotted against nondimensionalvelocity ratio for three jet configurations: a single
large nozzleandtwo arrangements of four small nozzles. Thetotal jet exit area is the
samefor all three configurations. As shownon the left side of the figure, at 0° angleof
attack, the jet-interference effects producea large lift loss andnose-uppitching moment

increased (conversion to conventional wingborne flight would typicallyas forward speed is

V _ 0.25 / The effect" of various jet arrangements is also shown in figure 53.occur at _-_ _

The diamond arrangement on the right appears to be the best of the three since it shows

higher lift and less pitching moment for a given angle of attack and velocity ratio. The

better characteristics of this configuration are believed to be caused by the more effec-

tive "streamlining" of the jet wake. This streamlining probably reduces the obstruction

to the free-stream flow and, consequently, produces less induced effect on the airframe.

The previous discussion was restricted to considerations of jet-interference effects

on the wing-body combination with the horizontal tail off. Lifting jets can also induce

large values of downwash at the horizontal tail, which result in additional nose-up pitching-

moment variations. As shown in figure 54, in cruising flight, a contemporary variable-

sweep fighter V/STOL configuration having a fixed forewing or glove will experience

vortices shed by the lifting glove. It is, of course, highly desirable to locate the hori-

zontal tail as low as possible so as to prevent impingement of the trailing vortex system

on the horizontal tail as angle of attack is increased. Experience with conventional air-

planes has shown that impingement of these vortices can cause serious longitudinal sta-

bility and control problems. Figure 55 shows the path of the trailing vortices for the jet

V/STOL airplane in transition. The vortices can be pulled down by the flow field induced

by the jet wake to such an extent that the horizontal tail will enter the vortex region as

angle of attack is increased. An example of a jet-induced downwash problem is presented

in figure 56. Pitching-moment variations with lift coefficient are shown for a vectored-

thrust V/STOL configuration for several horizontal-tail positions and thrust conditions.

The data in the left-hand plot show that the configuration is unstable with the horizontal

tail off and that the instability increases with lift coefficient. Addition of a horizontal

tail in a high position does not eliminate the instability, but moving the tail to a low posi-

tion provides stability over the entire lift range. When power is increased, the data on

the right side of figure 56 indicate that large changes in trim and stability occur with the

exit nozzles in the 30 ° to 60 ° range. A marked instability or pitchup is shown for a

nozzle angle of 60 ° . Obviously, considerable concern must be given to placement of the

horizontal tail on this type of configuration.
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The problems causedby jet interference are, unfortunately, not limited to longitu-

dinal characteristics. For example, shown in figure 57 is an illustration of the rolling

moments generated by propulsive effects when the airplane is sideslipped. Plotted at

the top of the figure is the sideslip angle generated by a 30-knot crosswind as airspeed

is reduced. Plotted at the bottom of the figure is the nondimensional rolling moment

produced by these sideslip angles. The data points indicate the moment produced by a

combination of flow into the inlets and jet-interference effects which must be trimmed by

the available roll control. The control available is the sum of the contributions of the

ailerons and jet reaction controls. The most critical region occurs at the lowest speeds,

where control required for trim may approach the total control available from the tip

jets. The problem is further aggravated by the fact that the reaction controls lose effec-

tiveness as speed is increased due to the interference effects between the control jets

and the wing. It is apparent that some limitation of sideslip excursions during low-

speed flight will likely exist. Excursions in sideslip are easily produced at low speeds

from several causes. First, when flying in close proximity to the ground, pilots tend to

use the ground as a yaw reference with little regard for wind direction. As a result,

during maneuvers large unintentional sideslip angles can be produced. Because of the

low dynamic pressures involved, large sideslip excursions are not accompanied by the

large lateral accelerations normally used as sideslip cues by the pilots of conventional

airplanes. In addition, inherent yaw instabilities such as those exhibited by the P.1127

can produce a tendency toward generation of large values of sideslip.

In summary, the jet-powered V/STOL airplane is likely to be a high-speed fighter

design which exhibits conventional stability and control characteristics in cruising flight.

During the transition to forward flight, large aerodynamic-interference effects on sta-

hillty _na _+_,-_1 Can occ'_.Lr; these "^ :-*_-" .................... j=t-_ll_r_n_e effects caiz sez'[ou_iy limit the opera-

tional capability of the airplane. With proper consideration to these effects during early

design stages, jet V/STOL airplanes are particularly suited to military missions, and

they have consequently become the first fully operational class of V/STOL airplanes.

STABILITY AND CONTROL TEST TECHNIQUES FOR V/STOL AIRPLANES

Several test techniques commonly used in investigations of the stability and control

characteristics of V/STOL airplanes are now discussed. Because of the increased

or even impossible to predict stability and control characteristics based on estimation

procedures commonly used for conventional airplanes. For this reason, the following

five techniques have been used by NASA for investigations of the stability and control

characteristics of V/STOL airplanes:
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(1) Free-flight technique

(2) Static force tests

(3) Dynamic force tests

(4) Simulation

(5) Flight tests

In the free-flight technique the motions of a powered, dynamically scaled model are

the output. A properly scaled model may be thought of as an analog computer which pro-

duces motions identical to those of the full-scale airplane. In static and dynamic force

tests the aerodynamic forces and moments are measured to obtain quantitative values for

the static and dynamic stability derivatives necessary for computer or simulator studies.

Perhaps the most promising of the techniques appears to be the use of in-flight or ground-

based simulators to obtain quantitative pilot evaluations of V/STOL vehicles. Lastly, the

end product or end point of the previous techniques is actual flight-test evaluation of the

airplane.

Free- Flight Technique

The free-flight technique is based upon the principle of dynamic similarity. It can

be shown through the use of dimensional analysis that the flight paths of a model and a

full-scale airplane will be similar if certain nondimensional quantities have the same

values for both vehicles. These scaling parameters for rigid body motions are:

(1) The relative density, which is expressed as

m

p/3

(2) The Froude number, which is given by

Disregarding the effects of Reynolds number and Mach number on aerodynamic

characteristics, it can be shown that equivalence of the relative density parameter

and the Froude number NFr is sufficient to ensure dynamic similarity between two

rigid bodies. This result has been applied to wind-tunnel testing in which airplane models

are scaled in a similar fashion. A typical test setup for free-flight testing of V/STOL

models is shown in figure 58. As depicted in the sketch, the model is flown in free flight

in the 30- by 60-foot (9.14- by 18.29-meter) test section of the Langley full-scale tunnel,

remotely controlled about all three axes by human pilots. The cable attached to the model

serves two purposes: First, a portion of the cable is composed of wires and light plastic
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tubeswhich supply electric power and control signals to the model control surfaces as

well as pneumatic power to the model propulsion unit. The cable also includes a 1/8-inch

(0.31-cm) steel cable that passes through a pulley above the test section. This cable

serves as a safety cable to catch the model in the event of loss of control. During flights,

the cable is kept slack so as not to influence the model motions by a safety cable operator

situated in a balcony at the side of the test section. Seated alongside the safety-cable

operator are the pitch pilot and power operator. The pilots who control the model about

its roll and yaw axes are located in an enclosure at the rear of the test section where

they can best view the lateral-directional motions of the model. Output data from flight

tests usually consist of motion-picture records and qualitative pilot evaluations of the

stability and control characteristics displayed by the model.

The flight tests usually are restricted to studies of level flight, but the technique

has been modified to permit tests of descending flight, which has proved to be a particu-

larly troublesome operational area for some V/STOL designs. The factors involved in

the simulation of descending flight are illustrated in figure 59. Shown on the left-hand

side of the figure is the balance of aerodynamic and gravitational forces during descent.

For a descent condition, the airplane must have a net aerodynamic drag, and the lift,

drag, and weight forces are in balance, with the drag being balanced by the forward com-

ponent of the weight acting along the flight path. For the simulated descent condition

shown on the right-hand side of figure 59, the model is flown with the same values of lift

and drag, but the drag cannot be balanced by a component of the weight and must now be

balanced by an auxiliary thrust force, which is independent of the normal propulsion sys-

tem. This input is usually accomplished by use of a small compressed-air jet at the

rear of the model. With this modification, the aerodynamic effects of descending flight

car, be simulated with the model in level flight in the wind tunnel. Obviously, this method

of simulation does not account for the effects of descent angle on lateral-directional sta-

bility, but these effects are small compared with the aerodynamic effects that can be

properly simulated.

The free-flight technique can be used to study a variety of stability, control, and

handling-quality problems ranging from studies of the uncontrolled (stick-fixed) motions

of V/STOL designs to studies of control requirements for satisfactory handling qualities.

A particularly appropriate application of the technique is the study of the maximum

descent capability of tilt-wing V/STOL airplanes. A typical tilt-wing design is limited

in descent capability for reasons illustrated in figure 60. Shown in figure 60 is an illus-

tration of the effect of descent condition on effective wing angle of attack. In the case of

the tilt-wing airplane, the effective angle of attack of the wing is not merely the wing-tilt

angle; it is also a function of the forward velocity and both the direction and velocity of

the propeller slipstream. This point is illustrated by two flight conditions. On the left

side of the figure, the upper sketch shows that the velocity of the airplane and the
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slipstream velocity combinevectorially to producean effective angle of attack _ which,
through proper geometric design,will be less than the stall angleof attack for the wing
aerodynamicsection. As the airplane begins to descend,as shownon the right-hand
part of figure 60, the power is reduced,andthis reduction in power in turn reducesthe
magnitudeof the slipstream velocity and changesthe relative direction of the free-stream
velocity. Both effects combineto producean increase in effective angle of attack at the
wing. As thedescent is steepenedby further reduction of power, a limiting condition is
reachedwhere the effective wing angleof attack exceedsthe stall angle of the wing sec-
tion so that major flow separation accompaniedby buffet, wing dropping, andwallowing
lateral-directional motions results. Figure 61 is presentedas anexample of the results
obtainedduring free-flight tests of a model of the XC-142 airplane. The results of the
tests are shownin the form of boundarieson a plot of flight-path angleagainst wing-
incidence angle. The data showa 6° descentcapability with no degradation in pilot rating.
As the descentanglewas increased into the dottedarea, the model required more and
more pilot attention to the controls, andflow separation on the wing was indicated by tufts.
At the higher descent angles in the crosshatchedarea, the model experiencedabrupt wing
dropping, abrupt losses in height, andgenerally sloppy, wallowing motions. The char-
acteristics in this region were consideredcompletely unacceptable.

Normally, small-scale tests would not be suitable for flight conditions involving
separatedflow becauseof the discrepancy in Reynoldsnumber. Experience has shown,
however, that the stall of a small-scale model usually occurs at a lower angleof attack
than that for thefull-scale airplane, andalso, whenthe stall does occur, the motions are
generally similar. In the caseof descenttests, therefore, it wouldbe expectedthat the
effect of low Reynoldsnumber would tend to give conservative results. This expectation
has indeedprovento be verified for the descent capability of the XC-142; that is, the
full-scale airplane doeshavegreater descent capability than that indicated in figure 61.

Forced-Oscillation Force Tests

Quantitative values of the dynamic-stability derivatives are normally required for
computer andsimulator studies of stability and control characteristics. Over a period
of years, estimation procedures havebeendevelopedwith which to estimate derivatives
for conventionalairplanes. The V/STOL airplane, however, operates in a flow environ-
mentwhere the effects of propulsive devices on stability derivatives assume anorder of
magnitudeof more importance. Dynamic-force test techniquesare usually necessary,
therefore, to measure values of dynamic stability derivatives. The basic principles of
dynamic force testing are shownin figure 62. As illustrated by the sketch on the left, a
model mountedto a strain-gage balanceis forced to oscillate at fixed values of amplitude
and frequency. The test setup illustrated wouldbe usedto obtain dynamic derivatives
due to rolling velocity. Tests are also conductedto obtain derivatives due to pitching and
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yawing; however, the basic methodof data reduction is similar in all cases. The plot at

the top of figure 62 illustrates the variation of roll angle as a function of time. Imme-

diately below the variation of roll angle is a typical return signal from the strain-gage

balance. For a model with stable values of aerodynamic damping, the balance voltage

will lag behind the roll displacement by a time increment t. The damping moment is,

of course, the component of return signal 90 ° out of phase with the displacement signal.

In actual testing, the displacement and balance-return signals are fed into an analog-type

analyzer which performs a Fourier analysis on the return signal, separating it into com-

ponents in phase and 90 ° out of phase with displacement. The voltage magnitudes are

then multiplied by appropriate geometric constants to obtain conventional dynamic

derivatives.

An example of the application of the forced-oscillation technique to V/STOL air-

planes is shown in figure 63. This figure shows the variations of the damping-in-roll

derivative Clp and the damping-in-yaw derivative Cnr with descent angle for a

powered tilt-wing model. The increase in descent angle (decrease in power) is shown

to reduce the aerodynamic damping greatly and to compound a piloting task already made

formidable by flow separation.

CONCLUDING REMARKS

The material presented in this paper has concentrated on several factors which

influence the stability and control characteristics of V/STOL airplanes. Only a few

of these factors are emphasized in the following remarks to illustrate some of the

characteristics.

The first pari of the paper described in detail some of the problems inherent in

flight at low speeds. It was shown that most STOL powered-lift airplanes will require

artificial stabilization, automatic speed control, and rapid thrust response for satisfac-

tory flying qualities. It appears that the technology required to develop this type of vehi-

cle is well in hand at the present time.

Next, some of the stability and control characteristics of tilt-wing airplanes were

discussed. These airplanes also require artificial piloting aids for satisfactory charac-

teristics, and in addition require a sophisticated flight control system. These vehicles

have, however, progressed through a second generation and are relatively advanced

V/STOL types. The tilt-wing airplane therefore represents an extremely promising

concept.

The characteristics of ducted-propeller V/STOL airplanes were then outlined.

Although a relatively compact vehicle can be designed with ducted propellers, it may be

subject to extreme sensitivity to gusts and turbulence in cruising flight. Because of this
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limitation, the ducted-propeller types require more research and development to ensure

adequte flying qualities.

The jet-powered V/STOL airplane has shown considerable promise, particularly

for fighter designs. This type displays relatively few stability and control deficiencies

when proper consideration is given to interference effects between the jet efflux and the

tail surfaces. With the recent advent of the Hawker-Siddeley Harrier, this type of vehi-

cle has become the first operational V/STOL concept.

In the final section of the paper, some rather unique test techniques presently used

by the NASA for analysis of the stability and control characteristics of V/STOL airplanes

are described. These techniques supply pertinent information which consists of stability

derivatives for use in analytical and simulator studies and flight motions of dynamically

scaled models. The results of these tests are shown to have direct application to the

design of V/STOL airplanes.
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Figure 3.- J e t  t ransport  modified for t e s t i n g .  
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, Figure 17. - Breguet 941 airplane.  

Figme 18. - Jet  -f l ap  concept. 
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Figure 19.- High t a i l  posi t ion required f o r  STOL concept. 
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Figure 20.- V/STOL airplane family. 
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Figure 23.- Power required for helicopter and propeller-driven V/STOL transport.
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Figure 24.- Mission capability of various V/STOL concepts.
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Figure 25.- Tilt-wing transport  design. 
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Figure 26. - Effect of ground proximity on yaw-control effectiveness. 
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Figure 31.- Flow pattern about a tilt-wing configuration in ground effect.
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Figure 32.- Effect of ground proximity on lift for tilt-wing configuration.
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Figure 37.- Flow pat terns  f o r  unshrouded and shrouded propel lers .  

Figure 38.- Tilt-duct V-STOL airplane.  
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Figure 40.- Effect of cross flow on moments of ducted propellers.
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Figure 49.- J e t  V/STOL airplane.  
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Figure 50.- Comparison of  time h i s t o r i e s  of l a t e r a l  cont ro l  inputs  of 
j e t  V/STOL and conventional a i rplanes.  
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Figure 91.- Effect of crosswind on directional stability of Jet V/STOL airplane.
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Figure 92.- Jet interference in transition flight.
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Figure _4.- Sketch of path of trailing vortices for contemporary fighter

V/STOL configuration in cruising flight.
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Figure _.- Path of trailing vortices for Jet V/STOL in transition.
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2. METHODS OF OBTAINING STABILITY DERIVATIVES

By M. J. Queijo

Langley Research Center

ABSTRACT

Various methods of obtaining aerodynamic derivatives are reviewed. These

methods include wind-tunnel tests, aerodynamic theory, and extraction from flight tests,

with the emphasis being on flight tests. Two techniques for extracting derivatives from

flight are covered in sufficient detail to indicate the procedures involved. These methods

are a strict least-squares approach and an iteration technique. References are listed for

additional background and details of various techniques.

INTRODUC TION

The design of an airplane is a very complex problem because of the many and often

conflictive requirements that have to be met. Many factors must be considered, such as

total weight, payload, armament, speed, stability and control, acceleration capability,

landing and take-off speed, and so forth. The final aircraft configuration is a compro-

mise, and the items given priority are dependent on the primary function of the aircraft.

In all cases, however, the stability and control, and the handling characteristics are quite

important. Early in the design, an attempt is made to determine the stability and control

characteristics of the airplane for two primary reasons:

(1) To determine the inherent stability and control

(2) To determine what stability augmentation, if any, is required to make the stabil-

ity satisfactory

Such determinations can be made by estimating the response of the airplane to various

disturbances, that is, by determining the motion of the aircraft for various force and

moment disturbances. The motion can be studied by use of the equations of motion of the

aircra/t. Such equations generally are written in a form that includes a number of

parameters that are referred to as stability derivatives. The purpose of this paper is

to indicate severai methods of obtaining such derivatives for use in stability or motion

calculations.
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SYMBOLS

ax,ay,a z accelerations along body axes X, Y, and Z, respectively

b wing span

Cl
MX

rolling-moment coefficient, QS-'-'b

My
C m pitching-moment coefficient,

QSe

Cn

CX

MZ

yawing-moment coefficient, QS'-"b

F X

longitudinal-force coefficient, Q--_

CXo trim value of Cx

Fy

Cy lateral-force coefficient, Q-_-

FZ

CZ normal-force coefficient, Q--_

ac/

2v

ac t

C/r =

aC/

C/5a =
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OCm
Cm&-

2V

OCm

Cmq- oq_

2V

OC m

Cm6e = 06 e

2V

8C n
Cnp=

°2V

Cnr- 8Cnrb
ogg-

8C n

Cn r =
2V

OCn

Cn6 r 06 r
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ac X

Cxq = q_

aCx
CX6a = a6 a

_C X

CX6 e aSe

aCX

CX6 r =

aCy

Cy_= _b
92V

OCy

Cyp= oPb
2V

OCy
CYr =

rb
agg

aCy

CY6 r =

_C Z
Cza =

aCz

CZq =
oFq

oC z

CZ6e =
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c local wing chord

cl

F

wing mean aerodynamic chord

section lift coefficient

downwash function

Fx, Fy, Fz forces along body axes X, Y, and Z, respectively

f frequency

g

Im( )

acceleration due to gravity

imaginary part

IX, Iy, Iz

IXZ

moments of inertia about body axes X, Y, and

product of inertia

Z, respectively

J cost function as defined in equation (25)

k arbitrary constant or spring constant

l =pVF

MX

My

MZ

M_

lift on vortex due to sideslip velocity

rolling moment

pitching moment

yawing moment

yawing moment due to flexures

m mass

P rate of rotation about body axis X
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Q

q

1 2
dynamic pressure, _pV

rate of rotation about body axis Y

Re( ) real part

rate of rotation about body axis Z

S wing area

semispan of horseshoe vortex

t time

tl/2

U

time to damp to half amplitude

velocity in direction of body axis X

V total velocity

V velocity in direction of body axis Y

W velocity in direction of body axis Z

X,Y,Z body axes

Xi ,Yi ,Zi inertialaxes

xT_y T coordinates relative to horsehoe vortex

(_ angle of attack

angle of slideslip

F circulation strength of vortex
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incremental change

5a

5 e

5r

aileron deflection

elevator deflection

rudder deflection

damping coefficient

angle between body axis X and horizontal plane

p air density

(_ roll angle about body axis X

linear displacement

heading angle

¢0 circular frequency

Subs c ripts:

n nth value or iteration

o initialvalue

A dot over a symbol denotes a time derivative; that is,

EQUATIONS OF MOTION

Figure 1 shows a system of axes fixed relative to the airframe. The equations of

motion are simply expressions of Newton's laws for translation and rotation along and

around each axis. A typical set of the six equations of motion is
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CX0o0e)ma x=m(d+ qw- rv) =-mgsin0 + QS x o+ Cx_+ Cxq_+ CXsaSa+ + CXSrSr

(C Cy_ _b pb rb )may=m(_+ ru-pw) = mgcos 8 sin_ +QS yflfl + _-_+ Cyp_-_+ Cyr _-_ + CYSrSr

ma z=m(_+ pv-qu) =mgcos 0 cos 4) + QS Z_Oe+ CZq_-_+ CZSe5

l_Ix+ qr(I Z -Iy)-(pq+_)Ixz=QSb(Clfl[3+ CI_ _b pb rb r)_-_ + Clp _-_ + Clr _ + ClsaSa + ClSr5

ciI¥+ pr(I x - IZ) + (p2 - r2)Ixz = QSc mc_C_+ Cm& 2V Cmq 2"V + Cmse6e

rlz + pq(Iy- IX) + (qr- P)Ixz =QSb(Cnflfl + Cn_ flb2_v+Cnp_rV+pb Cnr2v+rb Cnsr6r>

(i)

The equations are not derived in this presentation; however a complete derivation can be

found in any good text on aircraft dynamics. (See ref. 1, for example.) One major prob-

lem involved with the equations of motion is the determination of aerodynamic derivatives.

The aerodynamic derivatives are the items of concern in this presentation. Note that an

aerodynamic derivative is simply a nondimensional coefficient which relates a force or

moment to linear and angular velocities and accelerations; for example,

OCx I aFx (2)

CXo_ = 0_ lpV2 S 0_

The force in the x-direction, owing to a change in angle of attack, is given by

AF x = lpV2SCx(_ Aot (3)

Note that a basic assumption is involved here; that is, the force varies linearly with angle

of attack. This assumption is generally valid only for small perturbations from equilib-

rium. The remainder of this presentation covers the following methods of determining

aerodynamic derivatives:

(1) Wind-tunnel tests

(2) Aerodynamic theory

(3) Flight testing

The emphasis is on flight testing.
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DETERMINATION OF AERODYNAMIC DERIVATIVES

There are several methods of determining aerodynamic derivatives. The most

commonly used method is that of wind-tunnel testing. The specific procedure used

depends on the derivative to be measured.

Wind-Tunnel Testing

Static derivatives.- The static aerodynamic derivatives are the ones most easily

determined in wind-tunnel tests. These derivatives are those associated with angle of

attack and angle of sideslip. The forces and moments are measured for a range of

angles, and the data are then used to obtain the derivatives. For example, Cma is

determined by plotting pitching moment as a function of angle of attack; the slope of the

data is measured close to a = 0 and nondimensionalized. The procedure is simply

1 0My

Cm_ lpV2S _ 0_

The static lateral derivatives are slightly more complicated because they are functions

of angle of attack and sideslip. In measuring sideslip derivatives the procedure gener-

ally is to fix the angle of attack and to vary sideslip over some small range around zero.

This procedure is followed for several values of angle of attack. At each value of _, a

value of the sideslip derivative is obtained; for example,

(CnB)ot=0 = 1 [_Mz_
lP v2Sb \""_/ol=O

Rotary derivatives.- The rotary derivatives are those associated with rotary

motion; that is, with the angular rates p, q, and r. Measurement of these derivatives

requires special facilities or techniques. These techniques are mentioned briefly; how-

ever, suitable references are cited for more detailed explanations. Three basic prob-

lems associated with experimental determination of rotary derivatives are as follows:

(1) Obtaining the correct airflow distribution

(3) Isolation of the pertinent derivatives

One rather unique facility designed specifically to measure rotary derivatives is the

stability tunnel, which was originally at the Langley Research Center of NASA and is now

at the Virginia Polytechnic Institute in Blacksburg, Virginia. This facility can be used
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to simulate rolling,pitching,and yawing motion by actually curving the airstream. The

basic mechanisms involved are illustratedin figures 2 to 4.

Inthe rolling-flow setup, roll rate can be varied by changing the speed of the rotor

blades ahead of the model. In this manner the simulated rollingvelocity p can be

varied. The rollingderivatives can be measured; for example,

C lp pb

In the yawing- and pitching-flow setup, the angular velocities q and r are varied by

physically changing the tunnel-wall curvature and adding screens upstream of the model

to obtain the correct flow distribution. Detailed descriptions of the facility are given in

references 2 and 3 for rolling and yawing flow, respectively.

A more popular method of measuring aerodynamic derivatives is that of oscillating

a model in a rectilinear airstream. The oscillatory motion can be forced or free. Of

the two, the free-oscillation technique is the simpler. The basic procedure is outlined in

reference 4, and only the concepts involved are mentioned in this paper. In the free-

oscillation technique the model is mounted rigidly on a strut in a wind tunnel. The strut

is attached to a tube by means of several flexure pivots (fig. 5). When the tunnel is in

operation, the model is deflected, and a continuous record is made of time and displace-

ment. The method of extracting derivatives is illustrated in figure 6 for a yawing oscil-

lation and should be referred to in the following discussion. A curve is drawn to connect

the peaks of successive oscillations. By starting at some point on this envelope, prefer-

ably in the early part of the time history, the amplitude and time are noted. The time is

noted again when the envelope has reduced to one-half the initial amplitude. The time

difference is noted as tl/2. The period of the oscillatory motion is also noted. The

entire procedure is repeated at several angles of attack for wind-on and wind-off

conditions.

The basis for extracting certain derivatives from oscillation tests is outlined in

terms of a simple yaw oscillation. The equation of motion for this case is

(C _b2 rb Cn_}flb /3)QSD n_ _ + Cn r _ + _ + Cnfi + M_ = Iz_ (4)

In a wind tunnel fi = -@; also, by definition r = _). Making use of these relations

in equation (4) results in

- _Cn _ - n r - Cn _-_ + nfi - @ = 0 (5)
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Equation (5) is a second-order linear differential equationwith a well-known solution

= Ae _t (6)

Substituting equation (6) into equation (5) results in a quadratic in _ which can be solved

to yield k in the form

1/2

I Cnr Cn/} _ 2 b24v2 I(___g b2 Cn/.}(Cn/_4V2 _ QSb)IM_(Cnr - C h b - 4 -

2 -_C n 2 Iz 4v2b2 Cn/.

In general, the terms under the radical will be negative so that equation (7) will be of the

form

_. = a + i¢o

It is then apparent that the first term of equation (7) (real part of },) determines the rate

of decay of the oscillation, whereas the second term (imaginary part of _) defines the

frequency of the oscillation. A convenient method of determining the real part of _ is

to measure the time required for the amplitude of the oscillation to decay by some factor,

usually taken as the time to reach half amplitude. In such a case

and

From equations (7) and (8)

Since generally

_ 1 = eXt 1/2

_o 2

in(I) -0.693

Re(k) = _ = -_1/2
(8)

C b
lCnr - n_)_-_ -0.693 (9)

t!/2IT,-, ,_2 \

-d..J IJ fl2 QSh

IZ >> b--_2Cn_ (!0)
QSb 4V2

81



equation(9) yields

-2.772IZV

Cnr - Cn_ = QSb2tl/2
(11)

The frequency of the oscillation is given by the second term of equation (7) (the

imaginary part of )v). Since in general the first term under the radical is much smaller

than the second term,

¢o = Im(_)=

Mg,

4_" _ Cnf, J

1/2

from which

c°(_-_)2 = 1-_--- _27rf)2Iz + M_I (12)Cnfl + Cn_• QSb [£

Note that in oscillation tests it is generally not possible to measure an individual deriva-

tive because derivatives are generally obtained in combinations such as indicated in equa-

tions (11) and (12). However, in the case of a few derivatives, it has been possible to

obtain isolated derivatives under oscillation conditions. (See refs. 5 and 6, for example.)

Theory

Aerodynamic theory has been used extensively to develop methods for estimating

aerodynamic derivatives of isolated lifting surfaces or fuselages. The work in this area

is well documented for all flight regimes - subsonic, transonic, supersonic, and hyper-

sonic. Analytical methods to account for mutual interference effects when components

are assembled to form a complete aircraft are not well defined. However some empir-

ical methods have been developed for estimating interference effects. Several papers

which present methods for estimating the aerodynamics of complete aircraft have been

published. References 7 and 8 are good examples of such papers. The list of references

in reference 8 is a good indication of the amount of theoretical and experimental work

which has been done on methods of estimating aerodynamic derivatives.

In theoretical aerodynamics the basic task is to develop a suitable analytical model

for the wing, body, or combination and to use that model to obtain forces and moments.

The analytical models generally consist of suitable distributions of sources, sinks,
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doublets, vortices, or combinationsof these dependingon the problem under study. As
an elementary example, consider a planewing in subsonicflow.

It is well knownthat a wing canbe representedby a suitable distribution of vortices
in a windstream. Onepossible distribution of vortices is illustrated in figure 7. In
forward flight the lift per unit length of boundvortex is given by the Kutta-Joukowski
equation

t : pVF (13)

or, in nondimensional form

2r (14)
Cl = V--'c

If the circulation distribution

tion (14). The distribution F

The circulation gives rise to a downwash velocity according to the Biot-Savart law.

a horseshoe vortex as shown in figure 8, the downwash velocity is given by

F is known, the lift distribution is determined from equa-

is determined by the following concept (refer to fig. 8).

For

wm_-___ - +V-_-I + +y-:_+, +r x' x,2+(y, +1) 2 Cx'2+(y ' -1) _/x'2+(y ' -1) _/x'2+(y ' +1)

(15)

Because there can be no flow through the wing, the total downwash at any point on the

wing must be equal to the normal velocity component of the airstream relative to the wing

plane. In representing the wing by a vortex system as illustrated in figure 7, the bound-

ary condition is usually satisfied at only one point inside each horseshoe - at the 3/4-

chord point. A set of simultaneous equations for the wing can be written as

FllF1 + F12F2 + . . . + FlnF n= V sin o_1

F21F1 + F22F2 + . .

FnlF 1 + Fn2F2 + .

. + F2nFn= V sin a 2

I
!

+ FnnI'n = V sin _nl

-2)

(16)

83



The factors F for a horseshoevortex canbe foundby application of the Biot-Savart
law. Howevervalues of F havebeenpublished in a number of papers. (Seeref. 9, for
example.) Solutionof the set of simultaneous equations(16)yields the circulation distri-
bution and,therefore, also the lift distribution.

Nowa methodis neededto estimate the aerodynamic parameters other than lift or,
more specifically, a methodto estimate someof the sideslip or rotary derivatives.
Again, several math models havebeenproposed. Only one model is mentionedherein.
The basis for the model is simply this: It appearsthat the circulation strength is pri-
marily a function of the flow perpendicular to the wing surface, and is, for practical pur-
poses, independentof the flow direction in the plane of the wing; that is, the circulation
for a wing appears to be nearly independentof sideslip and yawing. The circulation dis-
tribution is well documentedfor wings at angleof attack. Therefore, in order to obtain
sideslip andyawing derivatives, the circulation dueto angleof attack is used, andthe
velocity componentsin slideslip or yawing are allowed to react with the circulation. The
conceptis illustrated in figure 9. The circulation distribution is symmetric for the angle-
of-attack case. Howevernote that the lateral velocity reacts with corresponding vortices
in sucha manner as to produce anantisymmetric loading andtherefore results in a
rolling moment. This concept is worked out in reference 10which showsthat several
derivatives canbe calculated basedon the concept.

Extraction of Derivatives From Flight Data

Various methodsof estimating aerodynamicparameters by use of wind-tunnel data
or from theory havebeenexamined. The derivatives canbe used to computemotions for
the aircraft. It is important to realize that the computedmotions and stability are mean-
ingless unless the equations of motion andthe aerodynamicderivatives are truly repre-
sentativeof the aircraft under consideration. Wind-tunnel measurementsare usually
madewith small models, andReynoldsnumber, roughness,tunnel-wall effects, Mach
number, andso forth, generally are not properly scaled to simulate the full-scale air-
craft. Questionstherefore arise relative to the correctness of the derivatives andsub-
sequentcalculations. It is desirable to check the derivatives by someother means. One
method is to obtain the derivatives in controlled flight of the full-scale aircraft. A
totally newproblem arises - that of extracting aerodynamic parameters from flight tests.
The basic problem nowbecomes: Givena group of measurementsof velocities, positions,
and accelerations taken over a time interval, determine whether the aerodynamicparam-
eters canbe estimated.

This problem is basically oneof a type which falls under the general category of
parameter identification. As a simple example, assumethat a spring-dashpot-mass

84



system exists, as shownin the following sketch, but the spring constant, dampingcoeffi-
cient, or mass are not known:

k
F

C

where

k

C

spring constant

damping coefficient

F force

m mass

By observing the oscillatory system andby making measurementsof velocities anddis-
placements k, C, and m canbe determined provided that an equation,which ade-
quately describes this motion of the system, canbewritten.

Several methodsof determining the aerodynamicparameters are examined. In this
discussion the measured or observedvelocities, displacements, and accelerations are
referred to as the state variables becausethey define the state of the system. The aero-
dynamic coefficients are called the aerodynamicparameters, or simply the parameters.

Analog-matching technique.- This method involves obtaining flight data for specific

series of control inputs. The aircraft response, in terms of accelerations, angular rates,

and angular displacements, is measured. Equations of motion are then written for the

aircraft, and estimated aerodynamic derivatives are put into the equations. Measured or

estimated mass and inertia characteristics for *_-_,,_aircraft ,,,_-,_ required and_ ._bould__ be

quite accurate. In the analog-matching technique, motions are computed for the same

_,.,f,.,_l _n._,,t¢ _ thn_ ,,._d in the flight tests. Comparisons are made between computed

and flight-measured responses. If any of the responses do not compare favorably, some

of the derivatives are changed, and the motions are computed again. The process is

repeated until satisfactory agreement is obtained between estimated and flight responses.

The ability to converge on a set of acceptable derivatives, or of even defining acceptable

agreement between computed and flight motions, is largely a matter of experience.
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Sometimesa particular computedresponsecharacteristic canbe varied by altering a
specific derivative. In many instances, however, a single derivative may alter several
responses.

Somestudies havebeenmadeto determine the effect of parameters on motions of

anaircraft. Results of studies of this type have shown,for example, that: Cnfl largely
governsthe period of the lateral oscillation; Clp largely governs the dampingof the
rolling motion; Cnr largely governs the damping of the yawing motion; Cmq largely

governs the damping in pitch; and Cma largely governs the period of the pitch

oscillation.

It is generally convenient to perform the matching on an analog computer where

derivatives can be varied at will by simply turning potentiometers, and where visual

presentations of modes of motion can be obtained on oscilloscopes or paper records. By

use of overlays, which give the actual aircraft motion, a comparison of computed and

flight motions can be observed.

Analog matching depends quite heavily on the experience of the operator; however,

it can be a very useful technique and has given very good results in many cases. One

drawback is that this technique lacks a clearly defined measure of how well the estimated

motion, obtained by using the extracted parameters, matches the flight records. More

details of the analog-matching technique can be obtained from reference 11.

Simplified flight tests.- This technique requires that the aircraft motions be single

degree of freedom. The technique for parameter identification is identical to that given

earlier for wind-tunnel tests. For example, for a single-degree-of-freedom oscillation

the rate of damping is related to a damping derivative, and the frequency is related to a

directional-stability parameter. The total number of parameters which can be deter-

mined from such simple maneuvers is quite limited. Derivatives such as C/r or Cnp
are difficult to measure.

Least-squares technique.- This technique is rather fundamental in dealing with the

correlation of data and is applied to a simple case to illustrate its use. A detailed

explanation of the method can be found in references 12 and 13. The problem to be

solved can be stated as follows: Given the time histories of some state variables of the

aircraft and an analytical expression for one or more of these variables, find the set of

parameters that gives the best agreement between the measured data and the flight data

in the least-squares sense. In order to see what this means, assume that the equations

applicable are those of equation (1) and consider the first equation

ma X = -mg sin 0 + QS Xo + Cxot_ + CXq (17)
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simplified (for illustrative purposes) to the casewith neutral controls. Assume that an
aircraft is properly instrumented with accelerometers, rate gyros, velocity indicators,
and control-position indicators so that the quantities O, V, o_, and q are measured.

Assume also that the air density is known. All of these state variables could be plotted

as functions of time as indicated in figure 10. Equation (17) contains three unknown

parameters CXo , Cxcx, and CXq. Assume that for the small amplitudes of motion

the parameters are constants. If the data were perfect (that is, free of noise), three sets

of numbers (at tl, t2, and t 3) could be taken from the plots and substituted into equa-

tion (17) to obtain three simultaneous equations. In theory these equations could be

solved simultaneously to obtain the desired parameters. However a number of practi-

cal problems arise in the application of the method. In general the data are not perfect,

so that the answers obtained would depend on which three sets of data were used. The

problem is that of determining one set of derivatives which, when used in the equations

of motion, provides the best approximation to the flight records in the least-squares

sense; that is, the set minimizes the square of the difference between computed curves

and the flight data (fig. 11). Proceed as follows, and use as much good data as are avail-

able. If a set of aerodynamic derivatives and computed motion are available, differences

as illustrated in figure 11 would be expected. Equation (17) would then be rewritten in

the form

a x+gsin0 -_V 2 Xc_C_

where R is the difference between the measured

terms (computed by using the measured values of

each time would be obtained so that

ax1 + g sin 01 - _ V12 Xotal

pS VA2 V
ax2 +gsin02 - _ 2 [Cxotc_ 2

q° o)+CXq_-_+Cx =R

a x and the sum of the aerodynamic

ot and q). One such equation for

+ CXq 1

/q_\+ CXq_2--_)2 + CX = R 2

(18)

(19)

pS Vn 2 _Cxc Otnaxn_ + g sin 0n - 2"_
L.-

_J

Squaring each of equations (19) results in
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pS
R12 = X1 + g sin 01 - _ V12 XotOll

= _ V22 X_a 2

Rn2 _X n - _ Vn 2 ICXa_n
= + g sin 8n pS

+ CXq 1 + CX

+ "tq\2v/2 ÷ cx°

+ CXq (2q-_)n + CXol

Addition of equations (20)results in

2

Ri 2 = + sin 0i - Vi 2 + CXq
i i

To obtain the set of parameters which will minimize the summation of equation (21),

perform the following operation:

_Ri 2 0_Ri2 a_Ri 2

i i i

aCx o 0Cxa 0CXq

=0

(20)

(21)

The result of performing this operation results in

°Cx a

°CXq

_ Ri 2
i

0'CXo

= 2 xi+gsin 8i - _-_ V i X_ai
i

__ +g sin 0i - pS . 2_C= 2 Xi _-_ v i X (_i
1

=2__ Xi+gsin0i-psVi2ICx_it" 2m

+ CXq q(_

+ CXq i

q\2V/i

°11( t+ CX _m Vi2°l

=0

=0

(22)
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For simplicity assume that the velocity remains constant during the measurements, and

let

Q = 1 pV 2

Equation (22) becomes

axi°_i + g _ ai sinSi- "_-_ Xot _ °ti2 +CXqi i i i i

=0

i i i i

q( l,o1_ axi + g_ sin 0i -- ol i _ +nCx
i i ml_X_ +CXq i

=0

+ CXo .
1

=0 (23)

Each summation results in a number, so that there are three equations and the three

unknown parameters CXo P CXq , and CX o. If there were more unknown parameters,
there would be more equations. The equations are solved simultaneously to obtain the

unknown parameters. Although the general approach used appears to be straightforward,

there are a number of problems which can arise, as are now noted. Suppose that equa-

tions (23) were solved (by using Kramer's rule) for CXa. The solution is given by

CX a

_aXiC_i +g_, c_isin Oi _ _i _ _i

i i i i

_ _Xi _411 + g _ I_>i sinei _ \2-V)i

i J. i

aXi + g sin Oi z.J_ q6 n I

i i i !

QS

: o2 zo, zo,
! i i

• i 1

,/, _ .
i i
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Somepotential problem areas cannowbe indicated. Supposethat, for the flight record
/ x

f2_/)i varied linearly with ai; that is,
being studied,

q_)i= kc_i

ko_i for Q2%f)iin the denominator and by factoring out the constant k
By substituting

where possible, itcan be shown thatthe firsttwo columns in the denominator are iden-

tical. From the properties of determinants, the denominator becomes zero and the value

of CXo t is absurdly large.

This problem is one of linear dependence; that is,two or more of the measured

responses are linearly related. In this simple problem such a dependence probably can

be seen by examination of the recorded data. In a practical situation,where many

response quantitiesare being obtained, the problem shows up as an absurd solution,or no

solution,because the determinant in the denominator (or itsequivalent)is zero. Ifcer-

tain responses are suspected to be linearly dependent, itis sometimes possible to express

one in terms of the other, and thereby reduce the number of unknowns and the number of

simultaneous equations.

Take a look at another possible difficulty. Suppose that in a general case no mea-

surable response occurs in one of the modes of motion following the application of a con-

trol input. Obviously an indeterminant situation again occurs. In working with flight

data, it is best to examine the response records and to analyze those sections (time

intervals) where there is motion in all of the variables of interest.

Other difficulties associated with analysis of data occur when using equations of the

form given in equation (1). Several angular accelerations, which must be obtained from

flight data, exist in the equations; however, these are generally not measured. These

accelerations can be obtained by differentiation of angular-rate measurements; however,

this increases inaccuracies in estimating derivatives. This problem can be overcome to

some extent by numerically integrating the measured data. The procedure for this

method is given in reference 13.

The example considered in this section is a very simple one where the concern has

been with obtaining a good match between measured and computed accelerations. In

dealing only with matching of accelerations, no coupling of the equations of motion exists;

therefore, each equation can be treated by itself to determine the derivatives appearing in

that equation. In practice it is often found that, when the aerodynamic derivatives are

determined in such a manner, there may be poor matching between measured velocities

and displacements and those computed by using the derivatives. Some techniques to

improve the data fit are mentioned sflbsequently in conjunction with another method of
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extraction of derivatives. Note that in applyingthe least-squares technique it was
assumedthat an equationwasavailable relating all the measuredstate variables. The
parameters were obtainedby solving sets of algebraic equations.

Iteration techniques.- Various iteration techniques are being used for parameter

identification. Detailed expositions of techniques, such as the modified Newton-Raphson

technique of reference 14, are available in various publications. The principles of a

typical iteration technique can be illustrated by reference to a simple example. Con-

sider a spring-mass-dashpot system performing an oscillation. The equation of motion

of the system is

c. k
+ _× +_× = 0 (24)

c k
Suppose that the parameters _ and -- are unknown and that the displacement × canm

be measured at discrete intervals over a time period. The problem is to estimate the
c k

parameters _ and _ of the system, such that the differences between the measured

displacement ×m and computed displacements ×c, using equation (24) and measured

initial conditions, are minimized in the least-squares sense. The quantity to be minimized

is the cost function

J= _ (×m i - Xci) 2 (25)
i

c k
The problem is to determine the parameters _ and _ that will minimize the cost

function. The procedure is to roughly estimate or guess values of the parameters, com-

pute displacements, form the cost function, and then use the cost function to determine

incremental changes in the parameters to cause the cost function to be reduced. The

development of the procedure starts by assuming that the displacement can be written in

terms of a truncated Taylor series as follows:

aXc A(c_ a×c A(k_

:- q-_ -I-
×c ×% \m] _ \ ]

(26)

The cost function then becomes

J = _ m i c O
i

a× c
a×c . %2

4J
(27)
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The cost function is minimized at this step by taking partial derivatives of equation(27)

with respect to _(-_/ and A(k) and setting the partials equal to zero. The resulting
equationsare

f oXcZ,m0(c)
(28)

_ aXc axe] _ aX___.c°Xc] _. °Xc] 2o j,: '
Equations (28) can, in principle, be solved simultaneously to determine the conditions

A(c) and A(mk----) to minimize the cost function. However, it is first necessary to

evaluate the partial derivatives appearing in equations (28). The partial derivatives are

generally referred to as sensitivity coefficients.

The sensitivity coefficients are obtained by use of equation (24). Taking partial

derivatives with respect to (c) and (k) results in

_____'"+ c a_ +_+k ax -0

o(c)mo(c) mo(c)

aX c a_ k O×
--+ +X +

@ _ (_) m(_)a a a
-0

(29)

Since (c) and (k) are independent of time, the order of differentiation can be changed in

equations (29) to obtain

= -_ (30)
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Equations (30)and (31)are secondorder linear differentia] equationsand canbe solved
numerically to obtain the sensitivity coefficients as function of time. In theseequations,

and X, which act as forcing functions, are values obtainedfrom integrating equa-
tion (24)with the first estimates of /c) and/_-k). Also note that the initial values

dF ax ] dF ax] _'"'ax , and\"" _X to be used in solvingequa-

o(c)
tions (30) and (31) are equal to zero.

The sensitivity coefficients, which are functions of time, are used in equations (28),

which can then be solved simultaneously to obtain _(c] and _(1_.
\m/ \m/

The updated parameters are then simply

(32)

The revised parameters are used with equation (24) to evaluate ×c for comparison with

×m' and if necessary the iteration process is repeated.

It should be emphasized that the discussion presented here on iteration techniques

is a very simple introduction to the subject. The process becomes quite complicated if

there are several degrees of freedom and numerous parameters are to be extracted.
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o DESIGN OF BODIES FOR LOW DRAG AND HIGH PERFORMANCE

IN PRACTICAL HYPERSONIC FLIGHT*

By E. S. Love

Langley Research Center

ABSTRACT

Some topics related to body shaping for minimum drag and improved performance

at hypersonic speed are presented. Implications of the most frequently assumed pres-

sure laws are reviewed from the view of practical flight regimes, and solutions expressed

in exponential residuals are presented for inviscid minimum-drag power-law bodies

(simple and complex) for a wide range of fineness ratio. Analytical results and compar-

isons with experiment are given for constraints of length-and-diameter and length-and-

volume. Experimental results from Mach numbers of 6 to 20 are presented for a series

of trapezoidal bodies; the cross section of the body giving best lift-drag ratio differs from

that indicated in earlier work. A simple "sin2-deficiency method" is presented for pre-

dicting pressures on blunt shapes; the method appears to yield results comparable to

more elaborate methods requiring machine computation.

INTRODUC TION

The history and breadth of our subject necessitates some bounds on the discussion.

The topics and approach outlined in figure 1 have therefore been chosen.** In recent years

increased interest in advanced reusable concepts of transportation systems to and from

earth orbit has been a major factor in the revival of studies in hypersonic body shaping.

For many of these concepts, bodies of moderate to large fineness ratio appear to offer

system compatability advantages. This feature also suggests the possibility for signif-

icant hypersonic performance. Accordingly, gains in performance that might be achieved

through body shaping without overly penalizing the total system and mission goals are

receiving attention. This in turn has led to a critical examination of methods for mini-

mizing drag and increasing performance and a reassessment of the validity and practical

value of past solutions for optimum shapes.

*A portion of this material was presented at the AIAA 7th Aerospace Sciences
Meeting, New York, N.Y., Jan. 20-22, 1969, in a paper by E. S. Love, W. C. Woods,
R. W. Rainey, and G. C. Ashby, Jr.

**To expedite publication, figures prepared for the original lectures have been
used herein. This accounts for repetition between the content of some figures and the
te_.
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The mid-1950's saw notable original contributions and improvements in earlier

minimum-drag solutions and optimization theory, such as the work of Eggers, Resnikoff,

and Dennis (ref. 1, referred to hereinafter as the ERD solution), Hayes and Probstein

(ref. 2), Cole (ref. 3), and Gonor and Chernyi (ref. 4). More recently additional analyses

and refinements have been presented (e.g., refs. 5 to 10). With no less appreciation for

the considerable contribution that these and other studies represent, observe that for

practical application the shapes concluded to be optimum in much of this work rest on

insecure ground, primarily because of the pressure laws employed. It is commonly

accepted that some comparisons of experimental pressure distributions with the assumed

pressure law do not show the satisfactory agreement claimed, for example, as concluded

in reference 5 from comparison of Gonor's data (for a free-stream Mach number of 4 and

a ratio of specific heats of 7/5) with the Newton-Busemann law. Concerns for similar

questionable and/or fortuitous confirmations were frequently voiced in the late 1950's.

At that time work focusing on these points was underway, but with the advent of the "space

age" this effort was deemphasized. The purpose of this paper is to document a few

results of this effort of a decade ago not heretofore published and to present some

selected results of recent and current hypersonic research conducted in related fields.

a _

A

2

SYMBOLS

local cross-sectional area of body

10 F-4/5b=_-_+--

CL ratio of lift coefficient at (L/D)max for given N to that for N = 8 with

positive camber

CDmi n

CD,Cmin

ratio of minimum-drag coefficient of body to that of pointed cone

CD'12) min

(CD,P)min

(CD,B) min

minimum-drag coefficient based on length squared, planform area,

and base area, respectively
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Cp pressure coefficient, 2(p - Poo)
_PooM2oo

d

ratio of local pressure coefficient to pressure coefficient at stagnation

point

base diameter (equals maximum diameter)

l/dF fineness ratio,

f= F(1 + F2) -1/2

7 3 (see text)g = 1 or 1 + _f

96 (F20/61 85) -1/2k=-_- +

l body length

(L/D)ma x maximum lift-drag ratio

(L/D)ma x ratio of (L/D)ma x for given N to that for N = 8

free-stream Mach numberMe o

exponent in shape equation for power-law bodies,n

optimum values ofnl,n2,n3,. • .

.... kHeight]' .................._" J

P,Ps,Poo

with positive camber

n for specified constraints

local, stagnation-point, and free-stream pressures, respectively

105



P'P*'PFD ratio of local pressure to pressure at stagnation point, value of this ratio at

sonic point, and values on flat disk, respectively

3 ltan(_/)q=_+

R base radius (equals maximum radius)

Re%/,Re_,d Reynolds numbers based on free-stream conditions and length and

diameter, respectively

r,x

r45,x45

coordinates of point on meridian curve of body (origin of coordinate system

coincides with nose of body, and x-axis coincides with axis of symmetry)

radius of body at point where 5 = 45 ° and axial length of conical tip with 45 °

half-angle, re spectively

S,S, distance measured along body surface from stagnation point, and value to

sonic point, respectively

V volume of body

angle of attack

Y ratio of specific heats

AxI,AX 2

half-angle of cone

inclination of body surface with respect to free stream, value at sonic point,

and value at sonic point for Moo = o% respectively

axial distance between points 1 or 2 and point for which 6 = 0 °, all on same

streamline (or on conformal extension thereto if 6 > 0° at base)

E,£ 0

_=4

nose radius and maximum nose radius, respectively, of spherically blunted

cone for given 8c, radius being tangent to cone surface (see fig. 35)
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_o constant in sin 2 pressure law

Subscripts:

eff effective

geom geometric

max maximum

DISCUSSION

Bodies of Revolution

Body types.- The bodies to be considered are limited to smoothly contoured convex

types with maximum diameter at the base, unless otherwise noted. Bodies referred to as

power-law types conform to

.r( )n <"
Figure 2 illustrates the body shapes and basic parameters. The practical significance of

accurately defining the optimum value of n is demonstrated in figure 3. The ability to

package equipment internally so as to move the center of gravity forward directs interest

toward the lower values of n; for large vehicles the difference in shape between n = 2/3

and 3/4 suggests more than academic motivation for resolution of debates over opti-

mum n. Minimum-drag examinations are limited to two isoperimetric constraint pairs:

length-and-diameter and length-and-volume. Shapes dependent upon the existence of free

layers are excluded. Here reference is to Newtonian free layers of inviscid flow con-

cepts. As depicted by the sketches in figure 4, the Newtonian free layer is a Newtonian

shock layer the position of which is determined, not by the geometry of the body, but by

the fact that the pressure must be zero beneath the layer (see right-hand sketch).

Pressure laws.- With rare exception, optimization analyses to determine minimum-

drag bodies at hypersonic speeds have employed either of two Newton-type inviscid pres-

..... 1 ..... / ........ i*-_nfi,_n fha_-,-÷n), _ h_qof v_vi_w _f which follows. One of these laws

may be expressed as

sin 2 d5
Cp 2 _+ 2 sin 5 .1^= _ cos 5 dA (2)

dA _O
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where the secondterm accountsfor centrifugal effects. In effect, it states that the pres-
sure coefficient is determined not only by the slope of the surface but also by the upstream
shape. This law is variously referred to as the complete Newton,limiting Newton,cor-
rected Newton,or Newton-Busemannandhasbeenmuchpublicized in optimization studies
of recent years. Solutionsbaseduponit are prominently described in the literature as
the "correct solutions," the inference beingat the expenseof analysesbaseduponthe
Newtonlaw that omits centrifugal effects. In the context of exactnessat M_° = _o, low _,

and application to bodies not restricted to small curvature, the "correct" claim poses

little difficulty as illustrated at the right in figure 5. However, for larger values of

at Moo = _ (at the left in fig. 5) and particularly when the usual evaluations of hyper-

sonic pressure-prediction methods are applied, such as for 1 << Moo << _ and values

of y likely to occur in practical flight regimes (typical examples shown in fig. 6), the

pressure distributions predicted by the Newton-Busemann law are found to be grossly

inadequate.* Accordingly, use of this law in deriving optimum shapes can be expected

a priori to provide only limiting solutions, albeit a possibility that some fortuitous com-

bination of factors not anticipated in the choice of the law could, in the light of examina-

tion of the results, suggest broader application.

Recognition of this situation has led many investigators to abandon the Newton-

Busemann law for one more adequate for predicting pressures on smoothly contoured

bodies under conditions of practical hypersonic flight, for example, as in the ERD solu-

tions (ref. 1). Almost invariably the choice has been the simple Newton or impact pres-

sure law

Cp= 2 sin 2 5 (3)

From the preceding discussion, it is perhaps obvious that this law has often been chosen,

not because the conditions needed for it to be applicable via Newton concepts (see ref. 11)

are more closely realized, but because of the considerable empirical evidence that it

offers better pressure predictions for the bodies and flow conditions of interest than given

by the Newton-Busemann law. Thus, viewed only from the degree of Newton compliance,

the general success of equation (3) must be regarded as fortuitous and empirically justi-

fied. But there must be reason for this success, restricted though it may be. In pursuit

*This long-recognized deficiency is no reflection upon the validity of Busemann's
conclusion (ref. 11) that centrifugal effects should be included whenever (1) the body
curvature is not small, and (2) the necessary conditions prevail that otherwise admit the
use of Newtonian concepts. The confusion continues because conclusions derived through
use of the Newton-Busemann law continue to be suggested for regimes in which this law
is inappropriate by either analytical or empirical evaluation and for which Busemann
never advocated its use.
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of this, andfollowing a brief examination of the merits of a generalized form of the
Newtonlaw (ref. 12), the flow fields andpressure distributions for a number of smoothly
contouredbodiesof revolution with attached shockandwith maximum diameter at the
basewere obtainedthrough the method of characteristics (including rotational effects).
The scopeof the parametric coverageof thesecalculations is shownin figure 7 along
with amplifying details of the flow field. Examination of the pressures in the flow fields
indicated that for M_/F > 2 andbodieshaving constant radius of curvature, the ratio

of the values of C_ for any two points on the same streamline, say 1 and 2, converges
IJ

toward (_Xl/_X2) 2 as the observer proceeds from the field streamlinesclosely

toward the body surface. This observation held up to the maximum nose angles of the

study (near that for sonic flow on the body surface in close vicinity of the tip). Some

minor exceptions occurred at the lower values of y, and significant exceptions occurred

when 6 closely approached zero. Provided these limitations are recognized,

(4)

may generally be applied, and by noting that for bodies of constant curvature

(_x2/L_Xl) 2 = sin 2 52/sin2 51 (5)

it may be concluded that*

Cp2/Cpl = sin 2 62/sin2 61 (6)

For the bodies having varying radius of curvature (increasing from nose to base)

the relation given by equation (4) was generally evident over the forward portion of the

body and, in fact, over most of the body; however, over the rearmost portion significant

departure frequently occurred and was greatest when high curvature was concentrated

near the nose. This observation is similar to that reported by Stocker (ref. 13) for shock-

expansion theory in his analysis of two-dimensional hypersonic flows.

While this examination by the method of characteristics was somewhat pedestrian,

it shows that without any resort to Newton principles, exact solutions indicate that for

certain classes of bodies and flow conditions a pressure law of the form of equation (6)

should give reasonable prediction of pressure distributions if an exact value of

*This conclusion may be reached directly via shock-expansion, tangent-wedge, or
tangent-cone approximations, but the reasons for the success of these approximations
hinge upon a similar examination; for example, see reference 2.
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CPl/sin2151 is employed. Evidenceof this is shownin reference 12. Thus if equa-
tion (6) is expressedas simply

Cp = _p sin 25 (7)

referred to hereafter as the sin 2 law, with the constant c_ determined exactly and in

accordance with application, then by analogy the success of the Newton law, equation (3),

is not always fortuitous. The point to be emphasized is that if optimization conclusions

are derived through proper use of the sin 2 law plus a subsequent examination to insure

that the derived shape still conforms to reasonable use of this law, then fair confidence is

assured in the conclusions as approximate guides for practical use. On the other hand,

these observations offer no explanation for the success of the sin 2 law on the forward

portion of certain blunt bodies,* except in the sense that the shock shape may be similar

to the body shape. Pressure prediction in this region is examined in more detail subse-

quently herein.

Certain optimization analyses employing variational methods, such as the ERD solu-

tions (ref. 1), are based upon the Newton law. While such results in terms of drag are

affected by the constant 2, this constant need not appear in the integral to be minimized.

(See fig. 8.) Accordingly, the shape of the body concluded to be optimum is, in terms of

the sin 2 law, unaffected by the value of _ so long as it is assumed to be the same for

the entire body family. In some respects, this feature leuds more weight to the ERD

solutions and others. On the other hand, different values of q_ in a given body family,

or for a given shape, may be chosen to improve the accuracy of the results. This modi-

fication is of interest if the body family includes pointed and blunted bodies, and if both

small and large fineness ratio are treated. Finally, for bodies of varying radius of cur-

vature, such as most power-law bodies, the value of _p must be continually changing.

This is the major factor casting suspicion upon solutions derived through use of the

sin 2 law with (p constant.

With regard to modification of the synoptic pressure laws, it may be possible to

weight the centrifugal term in equation (2), but this has not been explored herein.

Description of exponential residual solutions.- The following discussion presupposes

some familiarity with exponential residual mathematical procedures. Figure 9 briefly

summarizes the purpose and utility of residual procedures and notes three of the more

prominent. The method of averages generally develops values for the constants in a

series expression, but different values of the constants are possible. The method of

*The reader is also referred to the work of J. C. South, Jr. (see, e.g., AIAA J.,
Feb. 1969, pp. 369-371). South calls attention to the importance of the nose region and
the inadequacy of the similarity solutions in this region.
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least squares has wide utility and the advantage of giving a unique set of values to the

constants; it is assumed that the residuals follow a Ganssian law of error. The exponen-

tial residual solutions admit different values of constants; they are attractive for rela-

tions that must handle extensive plateaus in the dependent variable and have come into

prominent use with the advent of versatile computers. The chosen equation is always of

exponential form. These factors, combined with the power-law form of the bodies being

considered, and other objectives described subsequently and summarized in figure 10,

led to the choice of exponential residuals to express the results of the analytical studies

discussed next.

In the late 1950's the author obtained (for y = 7/5) several minimum-drag solutions

restricted to simple and complex power-law bodies, complex denoting that the power is

a function of x as well as F. This restriction was deliberate so as to obtain a smooth

transition from the blunt nose to the flanks of the body, in contrast to the sharp corner

that occurs at the flat nose of the shapes given by the variational solutions - a promi-

nent feature at small F and undesirable for practical application. These solutions

covered a broad range of F, and the results were transformed to power expressions by

use of exponential residuals in which the value of the simple or complex power in the

optimum shape is explicit in F. This had the additional advantage of affording direct

comparisons between complex power-law shapes resembling the ERD shapes (at moderate

to large F) and simple power-law shapes. These exponential residual solutions were

never published in the open literature, and are presented here and compared with earlier

and more recent work. Convergence of the exponential residual expressions was

examined for 0.1 < F < 100 and was found satisfactory, as was the case of F - oo.

Details of the calculations are omitted except as they depart noticeably from earlier work.

The exponential residual solutions for the length-and-diameter constraint were con-

fined to simple power-law bodies. The two solutions, n 1 and n2, for the value of n

in equation (1) that give minimum drag are

3 (S)n 1 = _f

n2 = 3_fm (9)4

The solution n 1 employed the sin 2 pressure law at large F with the value of _0 taken

as 2(_ + 1)(_ + 7)/(_ + 3) 2, following the hypersonic approximation of Lees for sharp

cones (ref. 14). At small F, the deficiency of the sin 2 law increases as the nose region

bounded by t_he sonic circle becomes flatter (as for power-law bodies with low n). In

111



this regime the approximation of Probstein (ref. 15)for the pressure distribution on a
flat disk close to the stagnationpoint

(lO)

Cp than the sin 2 lawwas employed ahead of the point for which it gave lower values of

ywith _ = CPs (T + 3 (_ + 1), this value of _ following the approximation of Lees

(ref. 14) for the stagnation point of blunt bodies.* The value of S. was approximated

by the sin 2 law, as were the pressures over the remaining portion of the body.

In the preceding manner, the solution n 1 employed values of Cp at the nose that

closely approximated the exact values, both for bodies with large bluntness and bodies

that were essentially sharp. In the intermediate range of F, the point of transition from

one value of _ to the other was roughly approximated by assuming that induced pres-

sures from blunting became insignificant beyond a point on the body 40 nose radii down-

stream of the sonic point, the nose radius being taken as the body radius at the sonic

point. This limit of 40 radii was chosen after evaluating the decay of induced pressures

at Moo > 20 by an approximation (ref. 17) for spherical blunting based upon blast-wave

pressure decay laws.** Thus, for certain combinations of n and F, the solution n 1

involves pressure distributions with discontinuities, but the variation of drag with F

or n is orderly. These discontinuities in pressure distribution are clearly in no way

related to the discontinuities in pressure distribution that occur on bodies derived via

free-layer concepts and the Newton-Busemann pressure law.

The solution n 2 used the same approach as the solution nl, except that at

large F the prediction of the pressure decay over the body employed the unmodified

shock-expansion method of Eggers, Savin, and Syvertson (ref. 19). In applying this

method, the small, blunt tip of the body was replaced with a conical tip tangent at the

point where 5=45 ° .

Figure 12 summarizes the calculations for the length-and-diameter constraint

and simple power-law bodies.

*This blunt-nose modification for _ may have been recognized prior to 1945.
A 1945 document (ref. 16, p. 10), hints of this, and a recent survey by the author of
related documents of that period appears to confirm this. Lee's result, however, was
derived independently.

**An evaluation of this approximation appearing in literature subject to dissemina-
tion controls (brought to the author's attention via ref. 18) is misleading since the approx-
imation was applied to shapes for which it was not proposed, and incorrect shoulder pres-
sure ratios were employed in some examples. Properly used, the approximation gives a
reasonable prediction as illustrated in figure 11.
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The solutions for the length-and-volume constraint were also confined to power-

law bodies defined by equation (1). For this constraint, however, the value of n is

complex (as defined previously). The solutions obtained were

(ii)

n4= 4 l+2F b] \

and three pseudo-slender-body forms of equations (11) and (12), including a trigonometric

transformation, that apply from 5 < F < 100; that is,

n 5 _ - (g = 1) (13)

n 6 =_-_\ = 1+ f3 (14)

r_= sinq(____x_ (g= I) (15)
R \Zl /

where

q = _-+ _tan

The solution n 3 employed planform area in the drag coefficient. With g = 1, the

solution n 3 used the sin 2 pressure law throughout. With g = 1 + 97-f3, the solution n 3

combined the sin 2 law at small F with the second-order shock-expansion method

(ref. 20) at large F, with intermediate F handled as described earlier. With regard

to shock-expansion predictions, the unmodified method assumes that two-dimensional

techniques apply to a three-dimensional field. Thus, the continuity law is only roughly

approximated. With the second-order or modified shock-expansion method, a correction

is applied to the stream tube to satisfy me continuity reia_ion. The typical .............. *llll[.$J. UV _lll_ll_

given by the second-order method is demonstrated in figure 13.

The solution n4 employed l 2 as the reference area in the drag coefficient. With

g = 1, the solution n 4 used the approach of n I to the pressure distribution, and with

1 + u_f3' it employed the approach of n 2, but with second-order shock-expansion atg
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large F. The solutions n3 and n4 with g = 1 + 7f3 were thus regarded to be more

accurate at large F, and the solutions n 4 to be more accurate at small F.

The different reference areas in these calculations were selected to demonstrate

the significance of a proper choice of reference area, inasmuch as some of the conflicting

results in the published literature can be traced to this factor.

Figures 14 and 15 summarize the calculations for the length-and-volume constraint

and complex power-law bodies.

( FThe shape factor 1 - was chosen so that when the sin 2 law was employed,

the derived shape would agree essentially with the optimum shapes for large F as

derived through variational methods (e.g., ERD shapes (ref. 1)). As mentioned earlier,

this provided both a basis for relating the effects of other pressure laws to earlier work,

and a body family free of the flat nose and sharp corners that become so prominent at

small F for the variational shapes. The variation of this shape factor with x/1 is

shown in figure 16.

Method-of-characteristics solutions.- Although it was felt that the exercise with the

exponential residual solutions gave values of optimum n that were fair approximations

of the correct values, it also strengthened the conviction that the correct value of inviscid

optimum n for practical flight regimes was not likely to be conclusively settled either

by experiment* or by analyses that employ approximate pressure laws, and the work of

the past decade has not altered that view. Therefore the method of characteristics

(including rotational effects) is now being applied to the problem by others at the Langley

Research Center. The first phase of these calculations is confined to simple power-law

bodies. While an accurate treatment of the blunt-nose region will be included, a study is

first being made of bodies with F sufficiently large such that in the region of n-values

where the optimum will fall (the exponential residual solutions provide a guide in this

respect), a pointed cone tangent at the point where 5 = 45 ° may be substituted for the

blunt tip, with reasonable confidence that the resulting change in drag will be minor, if

not negligible. Figure 17 illustrates the minute portions of bodies of moderate F that

are changed in terms of the ratio of body radius at the 45 ° point to the base radius, and

the ratio of axial length of the conical tip to the length of the unmodified body. The

change in downstream induced pressures must also be considered, but here too the per-

centage of the body that would be significantly affected is small. The values of opti-

mum n derived through the characteristics calculations will be shown subsequently for

these two examples.

*The value of experimental work as a rough confirmation is undisputed; it is essen-
tial, particularly in establishing viscous effects and practical guides.
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Comparison of exponential residual solutions with other solutions and experiment.-

The results of the exponential residual solutions for the/-and-d constraint are shown in

figure 18 and compared with other solutions. The horizontal ticks at the right are

slender-body solutions for simple power-law bodies obtained independently by several

authors (e.g., refs. 1 to 8) using the Newton and/or Newton-Busemann pressure laws.

The agreement of the solution n 1 at large F with the slender-body Newton solution

should be expected. To date no satisfactory explanation for the agreement of the slender-

body Newton-Busemann solution with the solution n2 at large F exists; the pressure

distributions for these solutions are quite dissimilar. Since the unmodified* shock-

expansion method (ref. 19) was employed at large F in the solution n2, the pressures

on the body are significantly less than the exact toward the rear of the body; the Newton-

Busemann pressures exhibit even greater disparity and marked difference in gradient.

Also shown is a solution obtained by using the sin 2 law with _o constant. The marked

departure of the solution n 2 (and the solution n 1 at small F) from this solution indi-

cates that the optimum bodies are likely blunter than the sin 2 law predicts.

The several points obtained from the characteristics solutions cast further doubt

upon solutions based upon either the Newton or Newton-Busemann laws. While further

output must be awaited to place these points in proper perspective, it is tentatively con-

cluded that the correct solution (in the moderate to large range of F) is neither the oft

quoted 2/3- and 3/4-power bodies but somewhere between the solutions n 1 and n 2

presented herein. The characteristic solutions and the solutions n 1 and n 2 indicate

that the decay in the value of n with decreasing F will take place at a significantly

higher value of F than given by the sin 2 law.

Some comparisons of these predictions with experimental data (refs. 21 and 22 and

unpublished results) are shown in figure 19. Figure 19(a) presents a compilation of

experimental data for F < 5 and 3.5 < Moo < 24.5. The values of Reoo,/ for these

data ranged between about 1/4 to 3 million. The data for Moo = 24.5 were obtained in

helium (V = 5/3); all other data were obtained in air (_ = 7/5). The nl, n2, and sin 2 law

predictions are indicated by the vertical ticks. The primary interest here is in the data

for F = 1/2 and 1, for which viscous effects are less likely to affect the identification

of optimum inviscid n because of the predominant role of inviscid drag in the total drag.

There is considerable latitude in fairing curves through the data; nevertheless, it would

appear that for F = 1/2 and 1 the solutions n 2 and n 1 agree more closely with the

IIIIIIIlIIUlIID I*li_l, ll _11_ _3111 Jk_ ._._I'UU_::L.UZU --:_2 _nd _ _i"_ fNN

sparse to be used as criteria for closely evaluating the predictions, and the shapesin

the optimum range are becoming slender enough to require an evaluation of viscous

effects. Accordingly, it seems reasonable to conclude only that all of the predictions fall

within the general area of the experimental minimum.

*Without the Syvertson-Dennis second-order modification (ref. 20).
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Figures 19(b)and 19(c)present recent results at Moo= 6.0 and 10.4, respectively,

for a series of simple power-law bodies with the/-and-d constraint and F = 6.63.

While the analysis of the results at Moo = 6.0 is incomplete, it is reasonably certain

that major viscous effects are reflected in the data; preliminary study suggests that

> 5 x 106, and that the location of transitiontransition occurs on the bodies for Reoo, l ~

differs from body to body at constant Reoo,/. The drag data for Reoo,/ = 2 × 106

exhibit a peculiar trend that analyses to date have not explained satisfactorily. The

value of n in the vicinity of the prominent minimum in the drag curves for the higher

Reynolds numbers is considerably less than that given by the inviscid predictions.

Values of (L/D)max are shown at the top. The peak value of (L/D)ma x for

5 × 106 < Reoo,l < 10 × 106 occurs at a value of n larger than that for minimum drag.

Additional analyses have given no reason to expect these values of n to coincide, and

it has been concluded that values of n for minimum drag are not reliable indicators of

peak (L/D)max.

The variation of (L/D)ma x for Reoo,l = 2 × 106 at Moo = 6.0 is noticeably less

than that for the higher Reynolds numbers. This lower sensitivity to n also occurs for

the data at Moo = 10.4 (fig. 19(c)) at comparable Reynolds numbers, for which the flow

over the bodies is laminar at all test values of Re%l. The drag curves for Moo = 10.4

are accordingly more orderly than at Moo = 6.0. The difference between the Newton law

estimate of inviscid drag and the experimental data roughly indicates the major role that

friction drag is playing in the total drag. Here again it can only be said that the predic-

tions of optimum n are in the vicinity of the experimental minimums, and that for these

all-laminar results the experimental value of optimum n may be lower at the higher

Reynolds numbers, or a lower n may be admitted with negligible drag penalty. In any

event, the overall results call for caution in using experimental results to evaluate invis-

cid optimum n and point up the need for additional study of the effect of viscosity.

While past analytical studies of viscous effects have given significant insight (e.g., ref. 10),

future studies in this area should be based upon more accurate pressure laws for prac-

tical regimes than the Newton or Newton-Busemann laws.

The results of the exponential residual solutions for the l -and-V constraint are

shown in figure 20 and compared with other solutions. Note that the value of n shown

for the complex power-law bodies of the exponential residual solutions is for x/l = 0

only. The ticks at the right are slender-body solutions for simple power-law bodies as

derived by several authors (e.g., ref. 8). To date, no satisfactory explanation has been

found for the general level of agreement of the exponential residual solutions for the

shape of complex power-law bodies in close proximity of the stagnation point only, and

the shape of simple power-law bodies. This might be associated with the prominent role

that nose shape plays in defining the optimum shape. In this regard, studies such as those
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of Rossow(ref. 23)haveindicated that the nosevertex is a critical point for hypersonic
similarity. (Seealso South'swork mentionedearlier.) Note the agreementof the points
obtainedherein to dateby characteristics solutions for simple power-law bodieswith the
exponential residual solutions for complex power-law bodies and g = 1 + "_.f3.

Also shown in figure 20 are the results of recent solutions for simple power-law

bodies obtained by using the sin 2 law with _ constant. The difference between the

results that can occur when using a reference area that differs for each body in the

family and one that is the same for all bodies in the family - the proper approach - is

illustrated by the two curves, one employing base area, the other employing 12 Cone of

several proper reference indices within this family). While the percentage changes in

planform area between bodies in a given/-and-V constraint family are much less than the

percentage changes in base area, it may yet be enough to affect the value of optimum n;

this should be recognized in employing the solutions n 3.

While the exponential residual expressions generally conformed to the calculated

optimum values of n within less than +0.01, the solutions n4 exceeded this slightly

at F = 100. The degree of upward trend in the solutions n4 at large F may there-

fore be unrealistic. It is important to recall that the exponential residual solutions were

based on calculations for F < 100, and thus may not apply for 100 < F < _. However,

as F -* _ the exponential residual expressions give n = 3/4 (as do the ERD variational

solutions); the values of n must therefore eventually increase above those indicated at

F = 100. The difference between the solutions n 3 and n4 for F < 0.8 perhaps poses

an unresolved question, although it is felt that the solution n 4 is more realistic in view

of the pressure laws employed. No experimental data of sufficient scope could be found

for comparison. A simple method for accurately predicting pressure distributions on

blunt bodies is currently being applied to this regime of small F. A brief description

of this sin2-deficiency method is given subsequently.

At moderate F, the experimental results of Spencer and Fox (ref. 24) are available.

These results were obtained at M_ = 10.03 and Re_,/ of 1.4 x 106 for a family of

simple power-law shapes conforming to an/-and-V constraint. The left portion of fig-

ure 21(a) presents, as a function of n, the values of minimum-drag coefficient (including

base drag) based on plalfforrn area and on 12 (to give the bodies a common reference)

and values of (L/D)ma x. The solid-line curves are the fairings reproduced from ref-

erence 24; the dashed-line curves are the present fairings added to illustrate the diffi-

culty in resolving by experimental measurements the questions relating to the confirma-

tion of optimum n. At the bottom right of figure 21(a) the zero-base-drag data are

shown; the fairing is original herein since these data were not presented in this format

in reference 24. It is well k_n_own that the Newton law gives much better prediction of

pressure distribution for these bodies and test conditions than the Newton-Busemann law,
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but within the latitude of data fairing, it is not possible to concludewhich law yields
better prediction of the n for minimum drag (seevertical ticks). The value of
n3 =n4 with g= l+-_f3 for F= 6 (the midrange F of this family) is also indicated;

this might bea reasonableindex in the sensenoted earlier with respect to nose region
similarity, but recall that it is derived on the basis of complex power-law shapes. From

these results, it is tentatively concluded that optimum n for minimum drag is in the

neighborhood of 0.6, recognizing that the values of F in this family and the test condi-

tions are such that viscous effects might be present that would alter this observation.

The values of (L/D)max shown at the top left of figure 21(a) indicate a peak value

in the vicinity of n = 2/3. The ticks for the theoretical values of optimum n for min-

imum drag are shown for reference only. As observed for the/-and-d results, without

further analysis, there is no reason to expect the optimum n for (L/D)max and that

for minimum drag to be the same. Moreover, it is now suggested that these data may

indicate that the former lies to the right of the latter, although the evidence is not suffi-

ciently convincing to negate the conclusion for correspondence in reference 25.

Recently additional experimental data have been obtained on the similar series of

simple power-law bodies tested in helium at Moo = 20 with varying Reynolds number,

which also changes M_ since Redo was varied by changing the stagnation pressure of

the tunnel. The results (zero base drag) shown in figure 21(b) indicate that the opti-

mum n for (L/D)max is much greater than that for minimum drag, in contrast to the

results for Moo = 10.03 in figure 21(a). Increasing the Reynolds number (laminar flow

existed on the bodies for all test conditions), aside from decreasing the drag coefficient

and increasing the (L/D)max, appears to increase the optimum n for (L/D)max and

to flatten the drag curves in the region of optimum n. The latter precludes precise

identification of optimum n; however, for practical applications in which it may be

desirable to distribute the volume more toward the front of the body, the possibility that

values of n as low as 0.5 may be used with negligible drag penalty is attractive. The

reference ticks shown in figure 21(a) for the theoretical solutions are repeated here.*

Recall that the n 3 _- n 4 solutions and the point derived from the characteristics solu-

tions are for y = 7/5, whereas the experimental results are for y = 5/3.

Shape comparisons.- The results of the exponential residual solutions and their

relation to other predictions can be placed in better perspective if the effect of differences

*There is a possibility that the agreement of the n 3 and n 4 solutions

!_[1 + 7f3) with the point from the characteristics solutions is partly due to the common
the 45 ° tip. While it is felt that this possibility is remote for reasons given earlier,

the ongoing calculations should resolve this question. At large F, use of the 45 ° tip
should arouse no concern. Also, comparison of the n 2 and characteristics solutions
for the l-and-d constraint reveals differences that reflect other than the tip question.
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in the value of n uponbody shapecan bevisualized. Toward this end, figure 22pre-
sents in normalized dimensions somecomparisons of shapesfor selectedvalues of F
andfor both l-and-d and l-and-V constraints. In figures 22(a) and 22(b) the prominent

flat nose and sharp corner for the ERD solutions (ref. 1) are illustrated for F = 1/2

and 1, respectively, and compared with the power-law shapes (simple and complex).

According to the exponential residual solutions, a significantly larger volume is permis-

sible for the l-and-d constraint at small F than is predicted for the same class of

bodies through the use of the sin 2 law only, or for the bodies given by the ERD variational

solution employing the same pressure law (designated "impact" in ref. 1 since q; = 2

was used). For the/-and-V constraint and F = 1/2, the solutions n 4 also indicate

that larger volume is available than that realized by the sin 2 law referenced to 12; here

recall that complex power-law shapes are being compared with simple power-law shapes.

For F = 1 and the/-and-V constraint, note that the simple power-law body based upon

the sin 2 law referenced to l 2 gives greater bluntness near the nose than that given by

what are believed to be the more accurate of the exponential residual bodies at this F,

that is, n 4 (= n3) with g = 1 + 7f3; note also the agreement of these bodies with the

ERD body at the downstream stations. As expected, the profiles of these complex power-

law bodies exceed that of the simple power-law body (referenced to 12) at downstream

stations. Overall, these comparisons (particularly of the profiles near the nose) may

hint of a deficiency in the better of our exponential residual solutions for the/-and-V

constraint in the vicinity of F = 1.

Figure 22(c) presents comparisons at moderate and large F of available ERD

variational solutions (refs. 1 and 24) and the exponential residual solutions. For

5 < F < 100, only the pseudo-slender-body approximations (eqs. (13) to (15)) to the expo-

nential residual solutions for the/-and-V constraint are shown. Whether or not these

approximations hold for F substantially greater than 100 is not known; but for reasons

already indicated, the values n4 and n 3 for F > 100 are not recommended without

further examination. These examples illustrate the typical accuracy with which the
a

selected shape factor (1 _x_ of the exponential residual solutions (that are based
\

upon the sin 2 law at large F) affords a power-law duplication of the ERD profiles at

large F. The ERD "modified -,,,v-_..... v, _,_hop___ ._,_;_rs_._...... tn the. variational solution in which

an approximation was made of centrifugal effects (ref. 1); its agreement with the

is not fully understood. The pseudo-slender-body profiles, n 5 and sinq(_),n2 shade

agree closely; however, this may prove to be of secondary interest in the light ofthe

n 6 profile which is believed to be based upon better pressure laws. Here too is illus-

trated the volumetric advantage* (as exhibited in the original ERD analysis (ref. 1) for

*At no expense in inviscid drag.
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the variational shapes)of the complex power-law shapes over the simple power-law

shapes, the blunter of the latter exemplified by the slender-body solution for simple

power-law shapes based on the Newton-Busemann law.

Trapezoidal Bodies

Interest in the hypersonic aerodynamics of bodies with polygonal cross sections

extends back a number of years, one of the foremost stimulants being the work of S_nger

and Bredt in the early 1940's,* who also suggested possible performance advantages for

flat-bottom bodies. In the United States widespread interest in this area began in the

late 1940's with the flood of documents reporting research conducted in European

countries in the late 1930's to mid 1940's. Among these documents were fragmentary

reports of experimental research at supersonic speeds on bodies of revolution, polygonal

bodies, and half-bodies, the last being halves of a few of the former. Some of the data

for the complete bodies have been published elsewhere; for example, see references 26

and 27. To the present author's knowledge, no reliable authorship was ever determined

for a portion of the remaining data and several other documents, and as some will recall,

most of the polygonal and half-body data became referred to as the GUS data (see

appendix). The test conditions of the GUS data were never confidently determined, vari-

ously indicated to be between Moc = 3 and 5, but more likely near 3, and if so, probably

at Reoo,/ near 106. This lack of definitive test conditions, combined with the growing

output from new facilities, soon caused interest in these data to wane. Nevertheless, it

is felt that the GUS data for one series of polygonal half-bodies deserve one more expo-

sure and a comparison with recent results for a series of trapezoidal bodies because of

the close similarity in geometric features.

The GUS half-bodies, or trapezoidal family of interest here, consisted of seven

bodies all having the same length, volume, planform area, longitudinal distribution of

cross-sectional area, and width (or span). The longitudinal distribution of cross-

sectional area corresponded to half of an ogival body of revolution of F = 3.5. The ratio

of span to height at the base was equated to N/_, this form apparently chosen for conven-

ience, since 4 < N < 8 embraces the series, and the value of N = 2_ represents the

reference ogival half-body and its trapezoidal equivalent. This use of N is adopted
herein.

In recent years Spencer (refs. 25 and 28) has tested a similar series of five bodies

at Moo = 10.03 and Reoo,/ of 1.4 × 106 . These bodies had a longitudinal cross-

sectional-area distribution conforming to the ERD variational solution for a body of

revolution with the/-and-V constraint, as derived via Newton's pressure law. Each of

*See, for example, reference 16, pages 103-106.
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the bodies had an equivalent fineness ratio (i.e., ratio of length to equivalent circular base

diameter) of 5. This value corresponds to half of a body of revolution of F = 3.54, and

thus is close to the F = 3.5 of the GUS bodies. Figure 23 depicts the trapezoidal body

family, lists their identical features, and notes the reference bodies of past studies now

to be compared.

Figure 24(a) presents a comparison of the GUS data and Spencer's data in terms

of (L-_)ma x. A similar comparison is shown in figure 24(b) for CL" The trends and

values of Spencer's data and the GUS data for (L--/'_max generally agree; some sec-

ondary differences occur for CL, dependent upon whether the data is read directly from

figure 4 of reference 28* or from figure 8 of reference 25. The general agreement may

indicate that the small difference between the shape of the ogival reference body for the

GUS data and/-and-V constraint ERD body of Spencer's data has little effect upon the

parameter ratios shown; however, more effect would be expected than indicated from

increasing Moo from about 3 to 10. It is possible that compensating effects of shape

and Moo could result in the agreement shown, although this seems unlikely. Camber

appears to have only small effect upon (L-'_max within the N-overlap of these data, as

contrasted to the advantage exhibited for positive camber for CL" Discussion of pitching-

moment characteristics will be omitted herein except to note that the general character-

istics for positive and negative camber for the two sets of data were similar, and negative

camber may be more attractive from the view of trim, as has long been observed in

numerous studies of hypersonic configurations. From a performance view only, these

data draw attention to the triangular shape (N = 4) at the left end of the curves for which

the peak (L--_)ma x and CL is indicated to occur.

Recently tests have been conducted at Moo = 6, 10, and 20 (Moo = 20 in helium) of

a series of bodies similar to Spencer's and the effects of Reynolds number in a limited

range have been examined. Spencer's body series was chosen in preference to the

GUS series since the basic data for the former are available, and a direct comparison

could be made of results from two different facilities at essentially the same Mach number

number ,(Reoo,l = 1.4 = 106/.. The series consisted of seven(Moo 10) and Reynolds

models, however, so as to obtain camber coverage over the fuil range of N. The tests

required two sets of models because of tunnel test conditions and Reynolds number objec-

tives, composite wood-and-plastic models for the tests in helium at high Moo, and metal

models for the tests at Moo = 6 and 10. Postconstruction measurements indicated that

both sets closely conformed to the sl_ape specific_Liu, s. At ..,_ ..... _ ............... _ -.-

tests at Moo = 6 had carried the negative camber to c_= 4 ° only because of a model

*Values as read by four observers. There is some latitude in arriving at CL

..... * _ 4 ° increments in _. Whether data-smoothing tech-since the tests were _und,.,_e_, at
niques have been applied to the GUS data is not known.
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supportproblem. However, since this c_ is approximately that for (L/D)max for the
caseof negativecamber, the datahavebeenincluded herein and are so designated.

Theresults for (L---_max and CL are presented in figures 25 to 27. No data-
smoothingtechniquehasbeenappliedto the basic data in arriving at the values shown;
someof the data for Moo= 6.0 involve 4 ° increments in _, twice that of the data for

Moo = 10 and 20. Comparison of three tentative points for Reoo,l = 1.4 x 106 at

Moo = 6.0 (fig. 25) with the data for Re%/ = 6 x 106 indicates that significant viscous

effects can occur with fairly modest changes in Reynolds number, if the values of Moo

and Re%/ are such as to introduce transition. For the data at Moo = 10 and 20
(figs. 26 and 27), the flow over the bodies is primarily (if not all) laminar, and the effects

of Reynolds number within the range indicated are small. (For Moo = 10.4, Reoo,1 was
varied between 0.6 and 1.8 x 106; preliminary checks indicate that the data for

Re%l = 1.4 x 106 are representative.) The trends in (L-'-/r_max with N are signifi-

cantly consistent at all three Mach numbers in indicating an advantage for placing the

maximum span at the bottom, and in showing that the span-height ratio for peak (L/D)max

is greater than that for the triangular shape /N = 4). The latter result is in opposition to

the results of figure 24, which indicate the triangular shape to give peak (L---/_-)max.*

This is of special interest inasmuch as the departure from the triangular shape toward

N = 5 to 6 (with maximum span on bottom) that has been frequently advocated in recent

design studies of advanced spacecraft configurations apparently does not involve the sac-

rifice in (L/D)ma x previously thought to accompany this departure. Rather, a gain may

well be the result, and there appears to be a fairly wide choice of N open to the

designer in which this gain can be realized. In general, positive camber gives better

(L/D)max although there are exceptions when the maximum span is at the top.

The variation in CL with N is generally similar at the three Mach numbers

(figs. 25(b), 26(b), and 27(b)), a prominent decay usually occurring as the maximum span

shifts from bottom to top. With positive camber and maximum span at the bottom, the

peak E L occurs for the triangular shape iN = 4). In this latter respect the present

data agree with the results of figure 24(b); however, the present data consistently dis-

agree with those results in the magnitude of CL for this shape, except as is read from

the value of figure 4 in reference 28. (Again, there is considerable latitude in arriving

at CL.) The present data indicate that the topmost area of this triangular shape (N = 4)

may be a major source of its loss in performance, but this bears further study.

Lest the foregoing discussion has overly emphasized the advantages of positive

chamber, attention is called to the earlier remarks on the merits of negative camber for

*The present results are also in opposition to recent analyses of Huang and Miele
(e.g., see J. Optimization Theory and Appl., vol. 2, no. 5, Sept. 1968); however, this is
of less concern since it may be shown that the Newton law used in Huang's analysis
introduces greater error than the effect of shape for shapes in the vicinity of the optimum.
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trim. With negative camber, distinct advantage is found in (L/D)max in moving away

from the triangular shape (N = 4) toward larger values of N and, thereby as before,

gaining performance with considerable freedom to the designer as to choice of N

(reference is to the case of maximum span at bottom).

The Sin2-Deficiency Method

In the discussion of the optimum bodies of revolution, several areas were noted in

which the sin 2 law can introduce significant deficiencies in the prediction of pressures,

one being on the blunt noses of power-law bodies of small F. The following is a sum-

mary of a simple method developed to alleviate this deficiency for that portion of

smoothly contoured blunt shapes between the stagnation point and sonic point. In num-

erous comparisons with experiment made to date, the method has given good results,

comparable to those achieved by numerical procedures generally requiring programed

machine computing; for examples of the latter, see reference 29.

If the deficiency of the sin 2 law can be identified and expressed simply but accu-

rately for some basic blunt shapes, such as those shown in figure 28, then application of

it to various blunt shapes by an approximation routine should be possible. A logical

candidate shape for identifying this deficiency is the flat disk normal to the flow, for

which of course 5 = 90 °. As depicted in figure 29 the value of the deficiency of the

sin 2 law in this case is simply (1- 15FD), where PFD is the ratio of the local pressure
to the pressure at the stagnation point on a flat disk. Assume, therefore, that an approx-

imation for the pressure distribution in terms of the sin 2 law and its deficiency may, as

the shape approaches a flat disk, be expressed as

= sin2 5- (1-13FD 1 (16)

This relation recognizes that for Moo >> 1, Cp = p _ P.

Cps Ps

For blunt bodies having local slopes such that the flow everywhere adjacent to the

surface is subsonic ahead of a convex sharp corner sufficient to expand the flow to super-

sonic _,,,_.v.._,_A_n_ the sonic point is located at thi_ corner, and the value of _ there is

. _lJ)

For smoothly contoured blunt bodies with sonic corners as described (for example,

varying from a flat disk to spherical caps, or roughly so), the pressure distribution can

be approximated by assuming that values of the sin2-deficiency term (1 - PFD) apply to
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the curved-body surface between the stagnation point and sonic point at corresponding

values of S/S,_ but in proportion to the ratio A sin 2 5/(A sin 2 5)max or A_/A_ma x.

For such bodies, equation (16) becomes as shown in figure 30

(18)

The key to this approximation thus becomes a solution for PFD' the pressure on

the flat disk. In searching for a simple but adequate analytical solution, the author per-

formed both variable-stream-tube-area approximations and Garabedian-Lieberstein

calculations for 7 = 7/5, and guided by equation (18) to look for an expression in terms

of the ratio (1-_FD//(1-P./' observed from both approaches that at least to first

order this ratio equals e -_. However, no direct solution could befound for k. Never-

theless, this observation promised solution through numerical calculations, and these

were performed for a flat disk for several values of 7. The results expressed in

the ratio (1-13FD)/(1-1_,) and shown in, ,//,figure 31 as a function of S/S. exhibited no

?,. Accordingly, let (1-_FD)/(1-_.)=e-_conclusive effects of be the general

solution and proceed to evaluate k as a function of S/S.. By plotting the results in

this form (fig. 32) the relation is observed to be similar to an error function curve, and

by adopting this type of expression, the following equation can be derived through graph-

ical or exponential residual solution

_FD = 1 - e-k(1 - p.) (19)

where

For T = 7/5

(20)

PFD = 1 - 0.472e -_' (21)

The prediction given by equation (21) is compared in figure 33 with a prediction by

Belotserkovskii's method (ref. 30) and a compilation of experimental data (ref. 18); it

appears adequate for engineering purposes. (A tabulation of values of PFD in fine

increments of S/S. facilitates rapid calculations for other shapes.) Use of equation (21)

with equation (18) gives good results for smoothly contoured blunt bodies with sonic cor-

ners, as illustrated by the comparison with experiment (ref. 31) in figure 34, and appears
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to at least equal the prediction accuracy of the method of integral relations, as machine

computed by the program in reference 29.

Cones with half-angles exceeding that for sonic flow at the nose have received atten-

tion in recent years as candidate shapes for planetary entry probes. Consider first the

application of equation (18) to sharp cones with 6c < 90 ° but greater than that for sonic

flow at the tip (6 c -- 55 ° for r = 7/5). By inspection, equation (18) would give a value

of _ at the cone tip that is deficient by the amount (1 = sin 2 8). As a first step then

equation (18) can be modified by the addition of (1- sin 2 8) in proportion to (1= S/S,).

The correct stagnation- and sonic-point values of _ are thus.retained, but the resulting

pressure decay is inadmissible for some conditions (e.g., consider large S/S, and

low 8c). To resolve this difficulty, it may be reasoned that at large S/S, an admis-

sible decay should lie roughly midway between the sin2-deficiency decay of the flat disk

and that resulting from the modification (1 - sin 2 5) to equation (18); therefore a term is

added that in effect averages the two as S/S, -* 1. The resulting more complete form of

equation (18) follows

_ /sin 2 8 - _.)p=sin28- (1-PFD)/ _-_,

+ _FD - I+_-,

'l'he,,,rm

-,-(i- s,.,,'0>(1-
(22)

is simply a linear approximation of the effect of tangential spherical

blunting of the tip of the cone (see fig. 35).

Figure 36(a) compares the present method with the machine-computed numerical

solutions of South (ref. 29) and the experimental data of Stallings and others (see ref. 29)

for blunted cones. Figure 36(b) gives further comparisons with South's calculations.

Figure 36(c) compares the present method with the modified Newtonian estimate and test

results of Kurz (ref. 32). (Note that _ closely approximates _ for Moo >> 1. A

value of (_, + 3)/(V + 1) was used in the present method for Cp at the stagnation point.

Reference 32 quotes e/R as 0.46, but the model drawings and the Newtonian calculation

therein conform to e/R of 0.412, which was used herein.) In these and other compari-

_L,* '*___ o .... _¢_ .L)_ .......... _.I.,_,4 I_ 4e_,._t,1 4-,,_ ).,ts ,'*eLmt*,),*,-,'btx f_.),, n_t_ct_flner fh_

pressure on sharp and blunted cones with sonic corners. For sharp cones, the method

cannot be expected to give reliable results for 5c close to or less than that for which

sonic flow occurs at the tip or to predict the cusp in the pressure distribution that occurs

at the tangency point under these conditions. For spherically blunted cones the method
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may be expected to hold to slightly lower values of 5c. In this regard the author found

in early analyses for _ = 7/5 that the following hypersonic approximation for the surface

inclination at the sonic point 5. on a sphere

is a reasonable guide, where 5.0

Mach number, taken as 49.3 °.

is the surface inclination at the sonic point for infinite

The calculation of the pressure distribution over the entire surface of a hemisphere

(and other smoothly contoured blunt bodies) can be made by applying the present method

from the stagnation point to the sonic point, the sin 2 law matched at sonic point by equa-

tion (6) for 5 < 5., and the Prandtl-Meyer approximation matched to the sin 2 law by the

usual procedure, for example, Wagner's results (ref. 33). The results of a combined cal-

culation of this type are shown in figure 37; ahead of the sonic point the sin2-deficiency

method compares favorably with Van Dyke's numerical solutions (ref. 34) at M_ = 5.8

and _, and with experimental results (ref. 18). The matched sin 2 law plus matched

Prandtl-Meyer gives equally satisfactory results over the remainder of the body.

Good agreement has also been found between this combined approach and experi-

mental distributions over bodies of the type reported by Ashby and Goldberg (ref. 35),

others by Stallings (ref. 31), and for bodies with gross changes in curvature ahead of the

sonic point, such as those having sizable flat regions in the vicinity of the stagnation

point, followed by rounded shoulders (see fig. 38). The last require an iterative approx-

imation for the location of the sonic point S./R. This iteration is necessary since for

such shapes the surface pressure has decreased significantly at stations near the outer

periphery of the flat region, even in the absence of the upstream relieving effect of the

rounded shoulder. Accordingly, less expansion of the flow is required beyond the tangency

point on the flat face to reach the sonic point. By use of equation (23) and the flat-disk

solution, equation (19), and by interpreting the value of PFD at the tangency point on the

face as the sin 2 of an effective 5 at the tangency point, an approximation for S./R can

be determined by iteration. For the type of body shown in figure 38, and dependent upon

the ratio of shoulder radius to R, one iteration may give a fair estimate of the geometric

value of 5, that is obtained by the number of iterations necessary to yield negligible

change as illustrated by the following tabulation for M_ = 20:

126



Ratio of shoulder
radius to R

0.10

.25

.50

.90

1.00

Geometric 5.,
deg

One
iteration

72.2

65.0

57.5

50.5

49.0

Full
iteration

80.6

69.6

59.3

50.5

49.0

As the ratio of shoulder radius to R becomes small (but nonzero), use of only one itera-

tion gives large error in 5., but in terms of S,/R this error is subdued.

Two approaches have been examined for applying the value of S,/R thus deter-

mined with the present method (eq. (18)). The first uses the geometric values of 5, the

values of S/S, being determined simply by (S/R)(R/S.). The second employs the same

approach to S/S., but uses the effective value of 5 at the tangency point on the fiat

face (determined in the iterative calculation). The effective values of 5 ahead of the

tangency point are varied between 90 ° and the value at the tangency point, and the corre-

sponding values of the effective A5 are used with the shoulder radius to obtain A(S/R).

The results of these two approaches are shown in figure 38. Either is a considerable

improvement over the modified Newton method, the second giving a greater relieving

effect from the rounded shoulder on the pressures ahead of the tangency point (S/R = 0.75).

The sonic point appears to be adequately predicted, and the matched sin2 law and the

matched Prandtl-Meyer give good prediction over the remainder of the nose.

CONCLUDING REMARKS

In these selected topics on body shaping for minimum drag and improved perfor-

mance at hypersonic speeds, the emphasis has been from the view of practical flight

regimes. For both simple and complex power-law bodies of revolution, the optimum

value of the exponent for inviscid minimum drag derived through the synoptic pressure

laws (Newton type) appears to be no more exactly defined today- than approximately a

decade ago. The major source of uncertainty stems from the use of the synoptic and

other approximate pressure laws having significant deficiencies. Experimental results

roughly confirm several inviscid predictions, but the experimental approach is not likely

to indicate a preferred prediction without exceptionally accurate measurement of viscous

effects which, as shown by experimental results, can be major. Ongoing exact calcula-

tions are clarifying the issue on inviscid optimums. The present experimental results
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indicate that the value of the exponentfor minimum drag is not a reliable indicator of the
value for ma_:imumlift-drag ratio.

Sincerecent analytical attempts at defining optimum shapeswith viscous effects
included are baseduponthe sameapproximate pressure laws that have led to the uncer-
tainty in the inviscid solutions, the quantitative predictions for the viscous optimums are
equally suspect,if not more so, particularly whenthe assumedinviscid pressure law
introduces pressure gradients markedly different from the correct. This emphasizes
the needfor accurate inviscid solutions as the essential basefor accurate boundary-layer
solutions.

Recentexperimental results for Mach numbers of 6 to 20 for a family of trapezoidal
bodies reinforces the substantial casealready establishedfor orienting the body such
that the maximumwidth is at the bottom. Contrary to earlier results, the present results
indicate that the maximum lift-drag ratio is obtainedfor bodieswith somewidth at the
top, rather than for a triangular cross section; this occurred for bothpositive andnega-
tive camber. Theseand similar experimental studies needto be extendedto the caseof
transitional andturbulent boundarylayers.

A simple methoddevelopedfor predicting the pressure distribution aheadof the
sonic point on smoothly contouredblunt shapes,the "sin2-deficiency method," appears
to yield results comparable in accuracy to those of more elaborate methods requiring
machinecomputation. It thus offers a simple meansfor more accurate calculation of
optimum shapesof small fineness ratio and of the drag contribution of a blunt nose on
bodies of large fineness ratio. The methodhingesupona solution derived for the pres-
sure distribution ona flat disk, for which related work showednoconclusive effects of
the ratio of specific heats. However, the latter does not assure that the normalized pres-
sure distributions for other shapesare equally insensitive to the ratio of specific heats
and suggeststhe needfor further study of these effects.

Severalareas in needof improvement are summarized as follows:

Inviscid predictions:
(1) Nonlifting
(2)Lifting

(3)Arbitrary longitudinaland transversal contours

Optimization analyses based upon reliable pressure laws (0 <_F <__o):

(i)Inviscid

(2)Viscous with sound inviscid base

(3)Items of inviscidpredictions
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Impact of practical factors:
(1) Shape,volume distribution, andso forth
(2) Environment

Innovation (analytical)

The last noted, analytical innovation, applies to all the preceding items andmore. Over

the past decadeincreasing concern has beenexpressedfor the lack of a satisfactory
methodfor predicting the aerodynamiccharacteristics of asymmetric lifting shapesin
the portion of the hypersonic entry environmentwhere viscous effects are prominent.
This deficiency still exists.
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APPENDIX

ADDITIONAL REMARKSON GUSDATA

For thoseunfamiliar with GUSdata, the incomplete source documentsdisplayed
little clue to authorship or origin except the letters G.U.S.on eachpage,bottom right,
hence, the epithet. Whenthe author first sawthe documentscontainingthe polygonaland
half-body data, they were packagedwith others relating to A4 and A5 missile research,
alongsidereports by Erdmann. (Seerefs. 1 and 3 of ref. 36.) In a recent secondeffort
to shedlight on the GUSdata, it has beenreasonablyestablished that the GUSdata shown
in the presentpaper are not part of the A4 or A5 history, nor products of Erdmann. The
author wishesto acknowledgethe aid of A. Busemann,H. H. Kurzweg, C. E. Coleman,
L. T. Bright, and others in this effort. It now appears that the original documentsare
either filed under someas yet unidentified listing at the WashingtonNational Records
Center, Suitland,Maryland, or were possibly destroyed several years agowith quantities
of old documentsrated as nonarchival. The GUSdataherein are taken from notes
recorded in 1949.

130



REFERENCES

1. Eggers, A. J., Jr.; Resnikoff, Meyer M.; and Dennis, David H.: Bodies of Revolution

Having Minimum Drag at High Supersonic Airspeeds. NACA Rep. 1306, 1957.

(Supersedes NACA TN 3666.)

2. Hayes, Wallace D.; and Probstein, Ronald F.: Hypersonic Flow Theory. Academic

Press, Inc., 1959.

3. Cole, J.D.: Newtonian Flow Theory for Slender Bodies. J. Aeronaut. Sci., vol. 24,

no. 6, June 1957, pp. 448-455.

4. Gonor, A. L.; and Chernyi, G.G.: On Minimum Drag Bodies at Hypersonic Speeds.

G-141, Morris D. Friedman, Inc. (Needham Heights 94, Mass.). (From Izvestiia,

AN USSR, O. T. N., no. 7, 1957, pp. 89-93.)

5. Chernyi, G. G. (Ronald F. Probstein, trans.): Introduction to Hypersonic Flow.

Academic Press, Inc., 1961.

6. Miele, Angelo: Theory of Optimum Aerodynamic Shapes. Academic Press, Inc.,

c.1965.

7. Kondo, J.: The Minimum Drag Problem of Axial Symmetric Body. Proceedings of

the Sixth International Symposium on Space Technology and Science, AGNE Pub.

Inc. (Tokyo), c.1965, pp. 129-140.

8. Lusty, Arthur H., Jr.: Slender, Axisymmetric Power Bodies Having Minimum Zero-

Lift Drag in Hypersonic Flow. D1-82-0275, Flight Sci. Lab., Boeing Sci. Res. Lab.,

July 1963.

9. Ellinwood, John Webster: Minimum-Drag Body With Specified Center of Pressure.

AIAA J., vol. 5, no. 4, Apr. 1967, pp. 826-827.

10. Kennet, H.: The Effect of Skin Friction on Optimum Minimum-Drag Shapes in

Hypersonic Flow. J. Aerospace Sci., vol. 29, no. 12, Dec. 1962, pp. 1486-1487.

11. Busemann, A.: Fl(/ssigkeits-und-Gasbewegung (The Motion of Liquids and Gases).

Handw_rterbuch der Naturwissenschaften, Vol. IV, Second ed., Gustav Fischer

(Jena), 1933, pp. 244-279.

12. Love, E.S.: Generalized-Newtonian Theory.

vol. 26, no. 5, May 1959, pp. 314-315.

13. Stocker, P.M.: Hypersonic Flow - Part I:

Dimensional Inviscid Flow Theory.

Aug. 1955.

J. Aero/Space Sei. (Readers' Forum),

General Considerations and Two

A.R.D.E. Rep. (B) 22/25, Min. Supply (Brit.),

131



14. Lees, Lester: Hypersonic Flow. Fifth Int. Aeronaut. Conf. (Los Angeles, Calif.),

Inst. Aeronaut. Sci., Inc., June 1955, pp. 241-276.

15. Probstein, Ronald F.: Inviscid Flow in the Stagnation Point Region of Very Blunt-

Nosed Bodies at Hypersonic Flight Speeds. WADC TN 56-395 (Contract No.

AF 33(616)-2798), U.S. Air Force, Sept. 1956. (Available from DDC as AD 97273.)

16. Clauser, F. H.; Peebles, G. H.; Krueger, R. W.; and Osman, K.R.: Exploitation of

German Aerodynamic Science (Field Notes). Rep. No. SM-20039, Douglas Aircraft

Co., Inc., Nov. 26, 1945.

17. Love, E. S.: Prediction of Inviscid Induced Pressures From Round Leading Edge

Blunting at Hypersonic Speeds. ARS J. (Tech. Notes), vol. 29, no. 10, pt. 1, Oct.

1959, pp. 792-794.

18. Matthews, R. K.; and Eaves, R. H., Jr.: Private Communication. ARe, Inc., Arnold

Engineering Development Center, Arnold Air Force Station, Tennessee.

19. Eggers, A. J., Jr.; Savin, Raymond C.; and Syvertson, Clarence A.: The Generalized

Shock-Expansion Method and Its Application to Bodies Traveling at High Supersonic

Air Speeds. J. Aeronaut. Sci., vol. 22, no. 4, Apr. 1955, pp. 231-238.

20. Syvertson, Clarence A.; and Dennis, David H.: A Second-Order Shock-Expansion

Method Applicable to Bodies of Revolution Near Zero Lift. NACA Rep. 1328, 1957.

(Supersedes NACA TN 3527.)

21. McDearmon, Russell W.; and Lawson, Warren A.: Investigation of the Normal-Force,

Axial- Force, and Pitching-Moment Characteristic s of Blunt Low- Finene ss-Ratio

Bodies of Revolution at a Mach Number of 3.55. NASA TM X-467, 1961.

22. Witcofski, Robert D.; and Woods, William C.: Static Stability Characteristics of

Blunt Low-Fineness-Ratio Bodies of Revolution at a Mach Number of 24.5 in

Helium. NASA TN D-2282, 1964.

23. Rossow, Vernon J.: Applicability of the Hypersonic Similarity Rule to Pressure

Distributions Which Include the Effects of Rotation for Bodies of Revolution at Zero

Angle of Attack. NACA TN 2399, 1951.

24. Spencer, Bernard, Jr.; and Fox, Charles H., Jr.: Hypersonic Aerodynamic Perfor-

mance of Minimum-Wave-Drag Bodies. NASA TR R-250, 1966.

25. Spencer, Bernard, Jr.; and Fox, Charles H., Jr.: Experimental Studies of Optimum

Body Shapes at Hypersonic Speeds. J. Astronaut. Sci., vol. XIV, no. 5, Sept.-Oct.

1967, pp. 237-240.

26. Ferri, Antonio: Supersonic-Tunnel Tests of Projectiles in Germany and Italy. NACA

WR L-152, 1945. (Formerly NACA ACR L5H08.)

132



27. Benecke, Th.; and Quick, A. W., eds.: History of German Guided Missile

Development. AGARDograph No. 20, Verlag E. Appelhans & Co. (Brunswick,

Germany), 1957.

28. Spencer, Bernard, Jr.: Hypersonic Aerodynamic Characteristics of Minimum-Wave-

Drag Bodies Having Variations in Cross-Sectional Shape. NASA TN D-4079, 1967.

29. South, Jerry C., Jr.: Calculation of Axisymmetric Supersonic Flow Past Blunt Bodies

With Sonic Corners, Including a Program Description and Listing. NASA TN

TN D-4563, 1968.

30. Gold, Ruby; and Holt, Maurice: Calculation Qf Supersonic Flow Past a Flat-Headed

Cylinder By Belotserkovskii's Method. AFOSR TN-59-199, AD 211-525, U.S. Air

Force, Mar. 1959.

31. Stailings, Robert L., Jr.: Experimentally Determined Local Flow Properties and

Drag Coefficients for a Family of Blunt Bodies at Mach Numbers From 2.49

to 4.63. NASA TR R-274, 1967.

32. Kurz, Donald W.: Detailed Pressure Distribution on a Blunted 60-deg Haif-Angle

Cone at Mach Numbers of 6.08 and 9.46. Tech. Mem. 33-404 (Contract No.

NAS 7-100), Jet Propulsion Lab., California Inst. Technol., Sept. 1, 1968.

33. Wagner, Richard D., Jr.: Some Aspects of the Modified Newtonian and Prandtl-

Meyer-Expansion Method for Axisymmetric Blunt Bodies at Zero Angle of Attack.

J. Aero/Space Sci. (Readers' Forum), vol. 26, no. 12, Dec. 1959, pp. 851-852.

34. Van Dyke, Milton D.: The Supersonic Blunt-Body Problem - Review and Extension.

J. Aerosp. Sci., vol. 25, no. 8, Aug. 1958, pp. 485-496.

35. Ashby, George C., Jr.; and Goldberg, Theodore J.: Application of Generalized

Newtonian Theory to Three-Dimensional Sharp-Nose Shock-Detached Bodies at

Mach 6 for Angles of Attack up to 25 °. NASA TN D-2550, 1965.

36. Love, Eugene S.: Aerodynaznic Investigation of a Parabolic Body of Revolution at

Mach Number of 1.92 and Some Effects of an Annular Supersonic Jet Exhausting

From the Base. NACA TN 3709, 1956. (Supersedes NACA RM L9K09.)

133



REVIVAL OF INTEREST - STIMULUS

HISTORY OF MINIMUM-DRAG SOLUTIONS (INVISCID)

• PRESSURE LAWS (SYNOPTIC,OTHER)

• PRIOR TO MID-1950's

• MID AND LATE 1950's

• THE 1960's

EXPERIMENTAL EVIDENCE ( NON LIFTING, LIFTING )

RATIONALISTIC METHOD (E.G., SIN2-DEFICIENCY METHOD)

AREAS NEEDING IMPROVEMENT

Figure 1.- Design of bodies for low drag and high performance in practical

hypersonic flight.

PROBLEM: SHAPE FOR MINIMUM WAVE DRAG

__ = (_)n SIMPLE, n=f(F)
COMPLEX, n = f(F,
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SIMPLE POWER-LAW BODIES

n=O
I

n:_ n:l

_L

Figure 2.- Bodies of revolution; power-law types.
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Figure 3.- Packaging significance of optimum value of n.

PRESSURE LAWS

• NEWTON: Cp=2 SIN2 8 ,.. fA

• NEWTON-BUSEMANN: Cp=2 SIN 2 8+2 SIN 8 d,b."/
°%

COS 8dA

Fig i.
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Figure 5.- Effeot of 7 on evaluation of Newton and Newton-Busemann

pressure laws at M_ = _.
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917- < 7 -<513

6 -<Moo < 50
114-< F < 12

BODY PROFILES: CONSTANT AND VARYING
RADIUS OF CURVATURE

SHOCK _

_

X_=o°

CP2/CPl = (AX2//kXl) ?" FOR Moo/F>_ 2_

FOR CONSTANT CURVATURE: (/kX2/AXI)2 = SIN 2 _2 / SIN:> _1

CP2/CPl = SIN 2 _2/SIN2_I

Figure 7.- Flow-field examination by method of characteristics.

Cp = (p SIN 2

VARIATIONAL CALCULUS ----"- MINIMUM-DRAG BODIES

E.G., EGGERS, RESNIKOFF, DENNIS SOLUTIONS - ERD

/7" '3
I (PYY

I +y'2
dx

ERD" _o = 2 (NEWTON LAW)

Figure 8.- The sin2 law and optimization analyses.
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Cp

(Cp EXACT) xlZ = 0

I"I __ r CHARACTERISTICS AND MODIFIED SHOCK-

.6- _k_ EXPANSION (2ndORDER)
X"

4 - "_,/-'" UNMODIFIED SHOCK- EXPANSION

21 \\_.,.._ f SIN 2 LAW ( fo EXACT AT NOSE)

0 .2 .4 .6 .8 1.0

x/l,
Figure 13.- Comparison of pressure-prediction methods.

3 _X o1n3= _ frog (I /..,

REE AREA: PLANFORM

CONSTANTS:

g=l'SlN 2 LAW THROUGHOUT

7 f3.g:I+3-

SIN 2 LAW AT SMALL F

2 nd ORDER SHOCK-

EXPANSION AT LARGE F

INTERMEDIATE F HANDLED

AS IN n t

3 /2Fb '_g / T /n4: T k_b] I-

REE AREA: L 2

CONSTANTS:

g=l: n I APPROACH

g= I+ _ f3:

ir'_ I'_

b= -_ +
33 -'-'-'_F

a

n2 APPROACH BUT
WITH 2n--dORDER

SHOCK- EXPANSION

AT LARGE F

4
5

Figure 14.- Exponential residual solutions; Z-and-V constraint;

complex power-law bodies.
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LIMITS: 5<F< I00

(g-I)

R ~ SIN (g =1)

(g=l+7f 3 )

w.,._;.=_+- ,.. (_,)
Figure 15.- Pseudo-slender-body exponential residual solutions;

Z-and-V constraint ; complex power-law bodies.

1.0

.8-

(l_x/_)o "s
.4

.2

0 .2 .4 .6 .8 1.0

X/_

Figure 16.- Variation of shape factor with x/Z; l-and-V constraint.
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r45 x45
CONSTRAINT F -_" i;

Z - AND - d 3.00 0.0123 0.002

Z-AND - V 5.84 0.0116 0.001

r45 RADIUS AT POINT ON BODY WHERE _' = 45 °

x45 AXIAL LENGTH OF CONICAL TIP WITH _ = 45 °

Figure 17.- Portion of body affected by substitution of conical tip.

n
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SIMPLE POWER-LAW BODIES ONLY

- /k_ SIN 2 LAW

___ (,oCONSTANT

SLENDER BODY

/"nl -- NEWTON
0

Ln? - - NEWTON-BUSEMANN

CHARACTERISTICS SOLUTIONS

KEY

.5
0 [ t t t t ttttl t I t t J,_l i

i

•I I I0
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Moo
6

!0

20

F 7'

3,5,10 7/5

3,5, I0 7/5

3,5 7/5,5/3

I I I lllll

I00

Fi_Jre 18,- Variation of optimum value of exponent with fineness ratio;
Z-and-d constraint.
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Figure 19.- Comparison of predictions of optimum exponent with experiment;
Z-and-d constraint.
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Figure 19.- Concluded.
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m m

PFD = p ON FLAT DISK

Figure 28.- Illustrative basic blunt shapes and pressure parameters

(o<_s <_s.).

I

3
,/-- SIN 2 8

(I-_FD )=DEFICIENCY TERM

0 I

s/s.=S/R
BASIS OF

APPROXIMATION " _ = SIN 2 8 - DEFICIENCY

= SIN28-(I-_FD)

Figure 29.- Sin 2 deficiency for flat disk.
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MOO

/

\

APPROACH: APPLY DEFICIENCY TERM AT CORRESPONDING S/S.

IN PROPORTION TO /_p/APMAX

r

WHERE J Ap'=p- p. = SlN2_-p.

L /X_MAx=_s- "P.= , - -_.

_ . rS,N2_-_,_
p= SIN 2_- (I- PFD } L I-p. J

7_L

_. = (_+1)7-1

Figure 30.- Sin2-deficiency method for smoothly contoured convex blunt bodies.
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NUMERICAL SOLUTION FOR PFD' SEVERAL VALUES OF 7

o) VARIABLE STREAM-TUBE-AREA APPROXIMATION FOR

SHOCK SHAPE - (DIRECT METHOD)

b) DEPARTURE POINT FOR GARABEDIAN- LIEBERSTEIN

CALCULATIONS- (INVERSE METHOD)

c) ITERATIONS

(I- FD)

NUMERICAL RESULTS
I-

0

i=

,°

#

4
.*.o

4

• L"

.*,'.

• .--:"

.... , _. -..o..._ *..-_.., • • •

S/S.

(I-PFD)
•". LET - e -;k

EVALUATE X vs S/S.

Figure 31.- Development of solution for PFD"
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APPLIED: S/S. = c le
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I

- c2X2

SINCE PFD = I-e-X (I- _.)

FOR 7' = 7/5,

Figure 32.- The PFD

-X

"PFD I O. 472 e

solution via error function.

166



l.Uo

0

167



1.0 4

.8
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6

o EXP, Moo=4.6:5 (REF. 31).
--- CALC,, Moo= 4.63 (REF. 29)

PRESENT METHOD, Moo>> I

I t t I I I I I I I

I t .t I I I I

.2 .8 1.0
I I I

.4 .6
S/S,

Figure 34.- Pressure distribution over spherical caps.
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SPHERICAL BLUNTING TANGENT
TO CONE SURFACE

,_, %" NOSE RAD. B MAX. NOSE RAD.

_:SIN 2B-(I-_FD) \ ,__._(SIN2B-

_ s/s.F_ z+ (I-%) I-SIN2 B)(I-s/s.)+_ LPFDI+S/S.(I-SIN)
k.

+(I _.. )( SIN2B-

Figure 3_.- Sin2-deficiency method for sharp and blunted cones (5c > 8c. ).
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4. PROBLEMS OF ATMOSPHERIC ENTRY

By Percy J. Bobbitt

Langley Research Center

ABSTRACT

Aerodynamic and heating problems of planetary entry are discussed with particular

emphasis on Mars and Venus. Real-gas and atmospheric-composition effects on the drag

and radiative and convective heating of entry spacecraft are illustrated. Considerations

involved in the selection of an ablation material are reviewed and typical heat protection

weights given. Aerodynamic data for blunt cones from a number of different facilities

are shown and some of the shortcomings of various test techniques pointed out.

INTRODUCTION

An engineer who concerns himself with the problems of atmospheric entry, whether

he be a specialist or project manager, must, of necessity, become knowledgeable in a

whole variety of subjects to be effective. The reason for this is that the various phases

of an entry mission and the major systems of an entry vehicle are so interdependent that

a change in any one can have a substantial impact on many others. Some of the more

important subjects and systems of interest are as follows:

Space mechanics

Communications

Power

Deboost and spin rockets

Flight mechanics

Aerodynamic forces and moments

Aerodynamic and reaction controls

Instrumentation

Atmospheric physics

High-temperature gas physics

Radiative and convective heating

Aerodynamic heat protection systems

Fluid mechanics (pressure loads)

Structural mechanics

Aerodynamic decelerators

Terminal retro-rockets

Landing systems
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Thesesubjects are listed roughly in the order in which they becomeimportant during an
entry, starting from spaceand endingup on the ground. This is not the order, however,
in whichthey are considered in the course of laying out a mission plan or designing an
entry vehicle. Sinceevery mission has a different set of constraints andobjectives, the
relative importance of the various technologies changes. More importantly, whencomplex
interactions exist betweenvarious phasesof anentry mission, iterations to satisfy all
(or most) of the constraints may involve the technologies in a variety of combinations.

The purposeof the present paper is to discuss primarily those topics which are
of concernduring entry, with particular emphasison those subjects related to aerody-
namics. Someof the interactions and options will be pointedout as they arise; many
others will beevident. Even with these restrictions, it is not possible in a paper of this
type to discuss all of the selected topics in detail; somewill be given only fleeting notice.
The choiceof which subjects to emphasize hasbeeninfluencedto a certain extent by a
desire to emphasizethose aspects in a Mars or Venus entry that differ from an Earth
entry owing to such things as atmospheric composition, atmospheric density, andentry
velocity differences.

The discussion will be given within the context of two specific space-entry missions
whichhave received substantial attention in the past few years. Oneis the delivery of a
payloadto the surface of Mars andthe other is the placing of a buoyantprobe in the lower
atmosphereof Venus. These two missions together provide most of the complications,

utilize most of the systems, andinvolve all of the technologydisciplines that canbe envi-
sioned in anunmannedentry mission. While these missions may not be flown in the years/
for which data are given, similar considerations must be madewheneverthey are seriousl 1
undertaken.

a

A

Cp

Cc

C r

CD
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SYMBOLS

speed of sound, ft/sec (m/sec)

reference area, usually maximum cross-sectional area, ft 2 (m2)

specific heat at constant pressure, ft2/sec2-°R (joules/kg-OK)

constant in convective heating rate equation (see eq. (1))

constant in radiative heating rate equation (see fig. 27)

drag coefficient, Drag force
qoo



CA
Axial force

axial-force coefficient, qoo

C L lift coefficient, Lift force
qoo

C m pitching-moment coefficient, Pitching moment
q¢o

CD, F forebody drag coefficient, Forebody dra_ forceqoo

CN normal-force coefficient,

D diameter, ft (m)

Normal force

qoo

internal energy per unit mass, ft2/sec2 (m2/sec 2) or Napierian base (2.718)

gravitational constant, ft/sec2 (cm/sec2)

altitude above surface, ft (km); static enthalpy, ft2/sec 2 or Btu/lbm

(joules/kg)

hT terrain height above mean surface, ft (km)

Hp

n o

density scale height, attitude change required to change density by a fac-

tor e, ft (km)

stagnation enthalpy at edge of boundary layer, ft2/sec 2 or Btu/lbm

(joules/kg)

Hw enthalpy at wall, ft2/sec 2 or Btu/lbm (joules/kg)

k conductivity, lbf/sec-OR or Btu/ft-sec-°R

K - CDAPs

tim sin q_E

k_ absorption coefficient, ft -1 (cm -1)

(joule s/cm- se c -OK)

L lift force, lb (kg)

m vehicle mass, slugs (kg)
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m ,n

M

Nc

Nur

P

PO

Pr

q

qc

QCO

qc

qr

Qr

Qc

R

a n

Re

Rb
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exponents

Mach number, V/a

shape factor (see eq. (7))

Nusselt number (see eq. (B6))

pressure, lbf/ft2 or lbf/in 2 (mb)

reference pressure, 2.09 × 10 -3 lbf/ft 2 (1.013 × 106 dynes/cm2)

Prandtl number, 7?Cp
k

pitching velocity, rad/sec

convective heating rate, ft-lbf/ft2-sec or Btu/ft2-sec

radiative heating rate, ft-lbf/ft2-sec or Btu/ft2-sec

1_ V 2 lbf/ft 2 (g/cm2)free-stream dynamic pressure, _Poo _o ,

total convective heat input during entry, ft-lbf/ft 2 or Btu/ft2

total radiative heat input during entry, ft-lbf/ft 2 or Btu/ft 2

total radiative heat input to entire body during entry, Btu

total convective heat input to entire body during entry, Btu

distance from planet center or radial coordinate, ft

gas constant, ft2/sec2-OR (J/kg-OK)

nose radius, ft (cm)

Reynolds number (see eq. (BT))

base radius, ft (m)

(joule)

(joule)

(km or cm)



s distance measuredalongbody surface, ft (m)

t time, sec

T temperature, OR (OK)

T O reference temperature, 492 ° R (273.2 ° K)

u velocity at edge of boundary layer, ft/sec (m/sec) or component of entry

vehicle's velocity perpendicular to radius vector from center of planet,

ft/sec Ckm/sec)

v component of entry vehicle's velocity along radius vector from center of

planet, ft/sec (km/sec)

v w wind speed, ft/sec (m/sec)

Voo flight velocity, ft/sec (m/sec)

AV incremental velocity given spacecraft to put it on collision course with

planet, ft/sec (m/sec)

Xcp longitudinal location of center of pressure measured from base of body

y distance measured normal to axes of body

Cmq = a qD

-0

L m\

V -*0

0C m

Cmo l = I-'-_llc_..,.O
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aCN
CN_ = (_a_/a_O

Ot

F

?70

Oc

P

D O

Subscripts:

angle of attack, deg

inverse density scale height, _, 1/ft (1/km)

ratio of specific heats

ratio of static enthalpy to internal energy, h/e

adiabatic lapse rate, dT/dh, °R/ft (°K/m)

shock-layer thickness

viscosity, Ibm/ft-sec (g/cm-sec)

nondimensional viscosity, 7/7o

reference viscosity 1.61 x I0"6 T,_--_, Ibm/ft-sec (3.2095 x I0-5 T,_-K,

g/era-see)

angular coordinate, deg

cone half-angle, deg

wavelength, _,

free-stream density, slugs/ft 3 (g/cm 3)

reference density, 2.51 × 10 -3 slugs/ft 3 (1.292 kg/m 3)

flight-path angle, deg

D value at parachute deployment
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e value at edgeof boundary layer

E value at entry, 800 000ft for Mars and200km for Venus

L value just prior to landing

max maximum value during entry

stagnation-point value or reference value

value at recovery temperature

value at planet surface

T value at tropopause

W value at body surface (wall value)

1 value behind shock

value immediately ahead of shock in free stream

A dot over a symbol indicates a time derivative.

A BBRE VIATIONS

BVS buoyant Venus station

HARA high-altitude radar altimeter

MV Mariner V spacecraft

RTG

S/C

radioisotope thermoelectric generator

spacecrait/capsuie

TDLR terminal descent and landing radar
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VM Voyager Mars

VIV USSRVenusIV spacecraft

SPACEMECHANICS,MISSIONPROFILES,AND SPACECRAFT

The term "space mechanics" is used here to differentiate the type of analysis used
for that part of a mission which takes place in space,wherethe perturbing forces are
gravitational in nature or dueto rocket thrusters, from that used for the part which takes
place in an atmospherewhere aerodynamic effects must also beconsidered. Space
mechanicswill beused for manypurposesduring the course of a Mars or Venus mission
(see fig. 1) including the determination of the spacecraft's Earth orbit, interplanetary tra-
jectory, midcourse corrections, planet approach trajectories, planet orbits, and planet

fly-by trajectories. Also, space-mechanics must be used in determining the trajectory of

the entry capsule from the point where it separates from the parent spacecraft down to

where it enters the planet's atmosphere. The approach and fly-by (or orbit) trajectories

provide the initial position and velocity of the entry spacecraft at the time of separation.

Immediately following separation, the entry spacecraft is given an incremental velocity to

put it on a collision course with the planet or, expressed in another way, to put it in its

entry corridor. As is seen later, entry from orbit and from the approach trajectory

impose different requirements on the entry vehicle design. The choice of entry mode may

also have an impact on the mission objectives as well since it can affect the payload weight

available and the ability to reach a prescribed surface location. Determining the deboost

parameters, that is, position, magnitude, and direction of AV (the incremental velocity

given the entry spacecraft) to satisfy all the mission constraints is a major task in either

mode. A good summary of the space-mechanic considerations for a Mars mission is

given in references 1 and 2. References 3 to 5 contain similar material but in much

greater detail.

Before proceeding with a discussion of some of the entry problems, it may be of

interest to look briefly at the kinds of systems and missions which have been considered.

Figure 1 gives the various phases of a Mars mission culminating in the entry and landing

of a capsule. The mission mode in which the entry spacecraft is separated from its par-

ent spacecraft in orbit (lower right-hand corner of fig. 1) is the one currently being used

in Viking-Mars project studies. Other options which have been studied are the release

of the entry capsule on the approach trajectory with the parent spacecraft subsequently

following the fly-by trajectory or being injected into a Mars orbit. The former is

depicted in the upper right-hand corner of figure 1.

A sketch of a proposed Viking-Mars spacecraft configuration mounted in the

Titan III-Centaur launch vehicle is given in figure 2. This figure shows the clearance

between the spacecraft and shroud required because of structural deflections during
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launch, the orbiter, the bioshield enclosingthe lander (labeled "Viking lander capsule"),
andthe air-conditioning connections. The latter are necessaryto keepthe capsule from
overheating on the launchpad owingto the heat emitted by the RTG's (radioisotope ther-
monuclear generator} located on the lander vehicle. A drawing of the lander situated
inside the entry capsulewhich, in turn, is inside the bioshield is shownin figure 3. Some
of the more prominent features of the entry capsuleandlander are the deorbit andtermi-
nal propulsion systems, the parachute container, the RTG's, the landing legs (in retracted
position), andthe blunt, 140° conical aeroshell. The entry capsulepictured, not including
the biocanister andthe deorbit engine,has beenestimated to weighbetween1600and
1700Ibm.

A time sequenceof eventsduring entry is depicted in figure 4 starting with the sepa-
ration of the capsulefrom the orbiter. This is followed by a retro-rocket firing to put
the entry capsuleon its proper entry trajectory. It subsequentlymay be pitched (alined}
to facilitate communicationwith the orbiter during coastand again just before entry to
minimize the angleof attack of the aeroshell. Obviously these maneuvers require an
altitude control system on the capsule to maintain a desired orientation in space. For
capsuleswhich are spunto maintain orientation, changesin alinement are not usually
attemptedandcompromises in the communicationsgeometry andentry angle of attack
may then result. It shouldbe notedhere that spin stabilization has most oftenbeencon-
sidered for entry spacecraft that are separatedon the approachtrajectory. Oneof the
reasons for this is that an active control system might require a large amountof pro-
pellant if the coast time from deboostto entry were on the order of several days.

Entry is definedas commencingat 800 000feet (244km) where the velocity, for
the orbital case, is in the range of 12800to 16 100ft/sec (3.9to 4.9 km/sec). For a
direct entry, that is, capsuleseparation onthe approachtrajectory, the velocity range is
18000to 21000 ft/sec (5.5to 6.4 km/sec). (Thesenumbers are for a 1973launch from
Earth.} The aeroshell andits heat protective coatingof ablation material havethe
responsibility of reducing these large initial velocities, and henceenergies, to values
that will permit a safe decelerator deployment. Most of this energy goes into heating the
air just aheadof the capsule; some is disposedof in the wake and some is conducted into

the ablation shield where it is expended through pyrolysis of tlhe ablation material. If

the air is heated to a sufficiently high temperature, as in a high-velocity Venus entry, it

will also radiate. Some of the radiant energy will reach the surface of the aeroshell and

some wiii ue radiated to space.

Shortly after the maximum heating rate has been incurred, the aeroshell will be

subjected to the maximum pressure load (hence maximum deceleration). The magnitude

will be dependent upon the entry velocity and flight-path angle, the density scale height of

the atmosphere, and the ballistic coefficient m/CDA of the entry vehicle.
/
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In the altitude range of 15000to 20 000feet, a parachute is deployedat an expected
Machnumber of 2.5 or less. A few secondslater, the aeroshell will be released andthe
payload-parachutecombination continuedto decelerate until about analtitude of 6000feet
where, in the caseof a soft lander, the terminal propulsion enginesignited. With ignition
assured, the parachute is released (at about4000feet abovethe terrain) andthe terminal
guidanceand control system takes over to place the capsule 15to 20 feet (4.57 to 6.1 km)
abovethe surface with a near-zero velocity. The engines are then turned off andthe
lander drops to the surface.

The hard-lander terminal decelerator system shownin figure 4 is muchsimpler.
The payload,which is encapsulatedin a ball of crushup or shockabsorbing material, is
extracted from the aeroshell at parachute inflation. The parachute remains attached
until near the surface at which time the payloadis released andthe parachute is propelled
off to the side.

At the bottom left-hand corner of figure 4, note that the terrain height has beenset
equal to two values, 0 and 6000feet (1.83km). This has beendoneto signify the fact
that in manyof the Mars terminal decelerator systems studies the effect of a terrain
height 6000feet (1.83km) aboveMars "sea level" hasbeenstudied.

The Venusmissions studied are similar to those for Mars in that capsuledeploy-
ments from both fly-by andorbiting spacecraft havebeenconsidered. Fly-by missions
include anApril 1972launch andan October 1973launch, with the latter providing the
parent spacecraft an opportunity for a Mercury swing-by. The orbit mission assumes a
November 1973launch. Figure 5 showsschematically the flight profile of the first of
these missions starting at booster spacecraft separation. As in the Mars mission, mid-
course corrections are appliedto put the spacecraft on the desired approachtrajectory.
After about121days into the mission and 2 days from encounter, the capsule is deployed
and given a velocity increment in the direction of the planet. It canbe seenthat the probe
will land near the terminator andbe in view of both the spacecraft andEarth at entry.

A sketch of a Venusfly-by spacecraft-capsule combinationenshroudedby a
Titan IIIC payloadfairing is given in figure 6. The spacecraft in this case is a 1969
Mariner modified to accountfor the larger angular inertia of the spacecraft-capsule com-
bination, the sun shadowof the aeroshell, andto act as a communicationsrelay for the
capsuleduring entry. Note that the capsule, like that of Mars, is surroundedby a bio-
canister; note also that the capsule is not as blunt as the Mars capsule. The total apex
angleof the Venusaeroshell has beenchosento be 110°, whereas that for Mars was 140°.

A closer look at the Venus entry capsule is provided by figure 7. Indicated in this
figure are some typical dimensions andweights of the aeroshell, parachute canisters,
balloon gondola,inflation module, andsubsonicprobe. The location of the roll rockets
on the afterbody are also shown. These are required to spin up the capsule following
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separation from the spacecraft so as to minimize the effects of thrust asymmetric during

the firing of the rocket engine (see top right-hand corner of fig. 7) which puts the capsule

on the desired entry trajectory. In addition, the spin (=2.2 rad/sec) maintains the atti-

tude (as mentioned earlier) of the capsule during the 2-day coast period so that it will not

enter the atmosphere backwards.

Before looking at the mission profile subsequent to entry, it is of interest to make

a comparison of the 1972 fly-by mission depicted in figure 5 with the 1973 orbital and

1973 fly-by missions from the standpoint of entry velocity and communications geometry.

Figure 8 shows the 1972 fly-by geometry again but from a different viewing angle and also

indicates that the entry velocity is 37 400 ft/sec (14 km/sec). The orbital mission shown

in the center of figure 8 yields a 32 000-ft/sec (9.76 km/sec) entry velocity, whereas the

1973 fly-by on the right gives 43 500 ft/sec (13.26 km/sec). An alternate, direct-entry

option for the 1973 orbital mission is noted as providing a 36 500-ft/sec (11.6 km/sec)

entry velocity. The spread in initial energy from the orbit entry to the 1973 swing-by

mode is nearly a factor of 2; therefore_ substantial differences would be expected in the

heating loads and decelerations and, hence, the aeroshell and heat-protection (ablation

material and insulation) weights.

Communication differences for the three missions are shown schematically and

tabled in figure 9. For the 1973 orbital mission, all communications from the capsule or

buoyant station are relayed by the orbiting spacecraft. In the 1972 fly-by mission, com-

munications follow the same format, except when the buoyant station becomes operative,

it communicates directly with Earth. The 1973 Venus and Mercury swing-by mission

requires all communications to be directly with Earth. Since the entry is made out of

sight of the spacecraft, the data obtained during this period must be stored and trans-

mitted to Earth by the buoyant Venus station (BVS). The communications requirements,

then, are different for each mission. As a result, the power requirements of the space-

craft, capsule, and BVS would also be expected to be different. Similar communication

differences occur for the various possible modes of Mars entry.

Entry into the Venus atmosphere is assumed to start at 656 000 ft (200 km) with a

flight-path angle of 30 ° ± 5 °. Approximately 19 seconds later (see fig. 10), the maximum

aerodynamic heating rate will be incurred followed almost immediately by the maximum

deceleration. At 70 seconds, the capsule will have been slowed to subsonic speeds and a

parachute is deployed to extract the payload. A probe weighing up to 80 or 90 pounds is

then dropped to m.ake measurements in the atmosphere ail the way to the g_uund. This

probe would measure such things as pressure, temperature, composition, and radiation

at selected frequencies. It might even contain a television camera to take pictures of

the surface.
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When the parachute-payload combination has been slowed to about 30 ft/sec, a bal-

loon is deployed and inflated with hydrogen (see fig. 7) and the parachute released. The

balloon will continue to drop until the hydrogen is warmed sufficiently for the balloon to

reach an equilibrium state. As it continues to heat up, the balloon will rise and it is

likely that some venting will be required for it to stabilize at an altitude of 190 000 ft

(58 km). Winds will then carry the balloon over the surface so that scientific measure-

ments can be made at widely scattered points. In the BVS study of reference 4, provision

was made for two drop sondes. These sondes are very much simpler than the subsonic

probe. They weigh only 5.0 pounds and make pressure, temperature, and water-vapor

measurements.

The effect of winds on possible regions of exploration by the BVS for the mission

options of 1973 are indicated in figure 11. On the left of this figure, a 1973 fly-by mis-

sion is shown in which the entry occurs near the evening terminator. With the spectrum

of possible wind speeds and directions assumed, the BVS will reach the dark side in

anywhere from 40 to 350 hours. A similar time range exists for the orbital case, althougY

the directions of drift are different. For the Mercury-Venus fly-by, the entry occurs on

the dark side and it is not expected that the winds would carry the BVS across the termina

tor. Type II and Type I notations in figure 11 simply indicate heliocentric transfer angles

from Earth to Mars of greater than or less than 180 °, respectively. Type II trajectories

are used when the initial energy requirements for a Type I trajectory are excessive.

PHYSICAL PROPERTIES AND ATMOSPHERES OF MARS AND VENUS

Once the entry spacecraft enters the atmosphere, it will begin to slow down and

heat up. The rate at which the velocity decreases and the heating rate increases will

depend primarily on the atmospheric density and composition, the gravitational constant,

and the spacecraft's velocity, flight-path angle and ballistic coefficient m/CDA. The

spacecraft velocity will, in addition, depend on the rate at which the density increases.

There are other dependencies but these are sufficient to indicate the need for accurate

physical-property and atmospheric data. Where uncertainties exist in these quantities,

they must be accounted for in attempting to satisfy the mission constraints and in the

aeroshell design.

Table I gives some of the physical properties and atmospheric data for Mars and

Venus. Comparable values for Earth are also included to point up the differences and

similarities of the three planets. It is evident from this table that the surface tempera-

ture, pressure, and density of Venus are much higher than those of Earth, whereas these

same quantities for Mars are much lower. The size and gravitational constant of Venus

and Earth, listed in the table, are nearly the same; the values for Mars are much lower.
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Mars rotational period however is nearly identical with that of Earth. Recent radar

observations of Venus indicate that it also rotates but there is considerable uncertainty

as to its precise rate.

Another fact apparent from table I is that there is considerable uncertainty in the

surface density and pressure of the Mars and Venus atmospheres. This uncertainty can

have a major impact on the terminal decelerator systems, especially for Mars, but very

little on the entry heating and pressure loads. It will be shown later that the primary

atmospheric quantity affecting the level of entry heating and loads is the density scale

height. The uncertainty in its value for Mars (see table I), therefore, causes consider-

able aggravation.

Some insight into the cause of the uncertainties in the atmospheric data of Venus

is provided by figures 12 and 13 (developed by George P. Wood of the Langley Research

Center). Figure 12 gives a plot of various temperature measurements and calculations

as a function of the distance from the planet's center. At high altitudes, data shown are

those from Mariner V; at low altitudes both Mariner V and the USSR's Venus IV probe data

are given. In between, that is, from r = 6110 km to 6190 km, several discrete data points

have been obtained with a resulting uncertainty of about 100 ° K. There is general agree-

ment that the cloud tops are in the r-range of 6110 to 6120 km. (Note that if the BVS is

in equilibrium flight at 70 ° F (300 ° K), it will float in the clouds.)

Good agreement seems to exist between the Mariner V and Venus IV data at low

altitudes. The major uncertainty then is the location of the surface itself. Venus IV

stopped transmitting at roughly 6080 km, which was explained at one time as the top of a

10-km mountain or plateau. Accepting this explanation, the surface would be at 6070 km,

which is still well above the best radar measurement. The differences in surface tem-

perature given in table I are the Venus IV 10-km peak and the radar surface values.

The pressure variations associated with the temperatures of figure 12 are plotted

in figure 13. There is an overall consistency of the measurements for pressure; however,

the surface value is still uncertain for the same reasons as cited for the surface tempera-

ture. The Venus IV 10-km peak surface pressure is 40 atmospheres, and the radar sur-

face value is 100 atmospheres. Most recent measurements indicate that the radar value

is probably the most accurate.

Differences similar to those of Venus also exist in the properties of the Mars atmo-

sphere; however, bee_llse of the previoll._|y m_ntioned uncertainties in the density scale

height, they are of more concern in the design of an entry capsule. The most credible

source of Mars atmospheric data until the recent Mariner VI and VII flights has been the

occultation experiment of Mariner IV. Basically, this experiment consists of the mea-

suren_lent of the attenuation of the radio ..... ' ' _'_ ....._,_,,,_, as It goes 0=,,,,,, and ,e-e,,,_, ses from
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behindthe planet. A summary of the atmospheric quantities computedfrom immersion
and emersion data is given in reference 6 and repeated in table II. It is clear from this
table that the overall uncertainty in the surface quantities couldbe written as follows:

Pressure, mb .................................. 6.8 + 2.7

Temperature, OK ................................ 205 + 50

Mars density, 10 -5 g/cm 3 ........................... 1.67 + 0.33

This "lumping" together of emersion and immersion data may, however, be an unduly

pessimistic interpretation of the accuracy of the data. Several plausible explanations for

the difference have been proposed. One centers around the differences in elevation of the

areas where immersion and emersion took place, and the other suggests that the mean

gravitational equipotential surface may be shaped in such a way as to produce the mea-

sured difference. Elevation differences could have been caused by local features and/or

by planet ellipticity. Obviously, until more is known about the topography and ellipticity

of the planet, mission planners will have to accommodate uncertainties of the magnitude

listed.

Some hypothesized atmospheric temperature profiles, based in part on Mariner IV

data, are given in figure 14. The curves labeled VM-8 and VM-9 are the lowest and

highest density-scale-height atmospheres from a set used in the Voyager program. (A

program involving a Saturn launched Mars spacecraft with a 19-foot-diameter entry cap-

sule. This project has been superseded by the Viking project.) The minimum, maximum,

and most probable curves are those used in early Viking project studies. The minimum

and maximum surface temperatures differ by 100 ° K, whereas at high altitudes, the dif-

ferences are in the hundreds of degrees. Corresponding density profiles are plotted in

figure 15 and show that down to densities of 10 -10 g/cm 3 the two sets of atmospheres

(solid- and dashed-line curves) have about the same density bounds. Tables III and IV

give a complete listing of the important variables for the Voyager-Mars and minimum,

maximum, and mean atmospheres. Appendix A shows how the atmospheric-quantity pro-

files are derived starting with the equation of state and the barometric equation.

Another atmospheric property of concern is the wind, including gusts. If a

parachute-payload combination is subjected for a long enough time to the wind, it will

become entrained. This added velocity component imposes an additional burden on the

retropropulsion system of a Mars soft lander for it must cancel out this lateral velocity

component to achieve a successful landing. A proposed probability distribution for the

near-surface wind speed is shown in figure 16. The most probable wind speed is on the

order of 45 miles/hour (20.1 m/sec); the maximum speed is 142 miles/hour (63.6 m/sec).

Winds for a Venus buoyant probe are important also since, as noted earlier, they will

determine the distances over which the probe will be able to obtain data and whether or

not the probe will cross the terminator.
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HIGH-TEMPERATURE GAS PHYSICS

Real-gas effects are somtimes not fully appreciated; therefore, the added emphasis

provided by a special section seems warranted. The principal concern here is the depar-

ture of the behavior of the gas from that at low temperatures. A better understanding of

these phenomena may be obtained by looking at a simplified model of a gas molecule in

various states of excitation (see fig. 17). At low temperatures, for example, room tem-

perature, only the translational and rotational modes need to be considered to provide the

ideal gas model. However, as the temperature of the gas increases, other internal

degrees of freedom come into play. In air at about 1500 ° K, the vibrations of the mole-

cules become important; at approximately 3000 ° K, the collisions become so violent that

dissociation occurs; and above 6000 ° K, electronic excitation and ionization (loss of

electrons from atoms and molecules) must be considered. (Temperatures for the excita-

tion of various degrees of freedom vary with pressure; hence, the numbers given are

typical values.) When the electrons in an atom have sufficient energy to shift orbits,

radiation is emitted. The loss of electrons from gas atoms and molecules (ionization)

causes free electrons to be distributed in the gas and creates problems in transmitting

electronic signals through the hot gas layer surrounding entry vehicles (blackout).

A mathematical model for the gas chemistry starts with an assumption of the com-

position of the cold gas mixture and the percentage of the total volume or mass of the gas

each component occupies. For example, a model for everyday air might be 78-percent

nitrogen and 22-percent oxygen by volume. Then with the knowledge of the characteristic

energies of each of the processes for each chemical species, the thermodynamic proper-

ties such as density, enthalpy, entropy, and the chemical composition for a given tem-

perature and pressure can be calculated.

These real-gas effects must be accounted for in any theoretical prediction of radia-

tive and convective heating rates, surface pressures, and force and moment coefficients

for entry bodies. In the case of experimental data for these quantities, care must be taken

not to use perfect-gas tunnel results as a substitute for real-gas hypervelocity data with-

out thoroughly examining the validity of such a procedure. For instance, pressure-

distribution (hence force and moment) data for slender bodies with flares (or control sur-

face deflections) and blunt aeroshells can be significantly affected by real-gas effects.

Few wind-tunnel facilities can simulate real-gas flow conditions and often theory must be

relied on in whole_ or in part, to predict adequately the performance of hypervelocity flight

vehicles. This point will be discussed in more detail in the section entitled "Aerodynamic

Forces and Moments."

One indicator of real-gas effects is the ratio of specific heats 7. At low tempera-

tures in air, this ratio is 1.4 but as the temperature increases, it generally decreases.
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Figure 18(a)(from ref. 7) showsa plot of aneffective ratio of specific heats _ for air
in thermodynamic andchemical equilibrium defined as the ratio of h/e, which at low
temperatures is exactly _. Using the normal shockdensity, pressure, temperature, and
static-enthalpy jump conditions for M_o= 34.66, where h = 200 000 feet (given in ref. 8),

the calculation of _ behind a normal shock can be demonstrated. The following table

gives the shock jump conditions in column 1 and the values behind the shock in column 2:

Shock jump Quantity behind shock

Pl
--= 1576
P_

T1

Too
- 44.94

Pl = 9.69 x I0-6 slugs/ft3

Pl = 743 lbf/ft 2

h 1
-- = 241.2
hoo

T 1 = 20 200 ° R

h 1 = 6.48 x 108 ft2/sec 2

By eliminating e from the two relations

p = (_- 1)pe

h=_e

and substituting the preceding values of Pl' Pl' and hl, a value of _ of 1.135 is

obtained. From the equation h - _e, with _ = 1.135, a value of 675 for the nondimen-

sional energy parameter el/RT o may be calculated. Higher Mach numbers for the

same free-stream quantities (subscript 1 quantities) will result in even higher tem-

peratures, pressures, and densities behind the shock. The relationship between these

quantities at high temperatures is illustrated by the plot in figure 18(b).

The speed of sound for the preceding conditions may be determined from figure 19.

parameter a2/RT o will have a value of 1.4 for air at low temperature asThe ordinate

may be seen by dividing the equation for ao2

ao2 = _,RT o

by RTo; thus

ao2

RT ° - _ = 1.4
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For a2/RTo = 100, which is roughly the value obtained by using the values previously

computed for el/RT o and pl/Po, the speed of sound a will be 10/1_.4 = 8.46 times

its low-temperature value for 7 = 1.4.

The solid-line curves in figures 18 and 19 are curve fits used in reference 7 to com-

pute the flow field about bodies traveling at planetary return velocities. Since the com-

putation of the thermodynamic properties of a gas requires considerable computer time,

the use of curve fits is almost mandatory in flow-field calculations. Real-gas effects on

the thermodynamic properties of planetary gas mixtures are similar to those shown for

air.

Real-gas effects also play an important part in the transport properties of a gas,

that is, viscosity _/, conductivity k, and the diffusion coefficient. From a convective-

heating standpoint, viscosity and Prandtl number T/cp/k are the most important of the

transport-property parameters. This can be seen from the following approximate expres-

sion for the axisymmetric stagnation-point heating rate (see ref. 9):

= 1 _(Ho - Hw)_(due/ds)oClc,o 2 (_--_)2/3

where Pr is an average value for the Prandtl number in the boundary layer. As pre-

viously indicated, real-gas effects have a substantial influence on the density behind the

shock and hence on Pc,o; also, (due/ds)o is affected but to a lesser extent.

Real-gas effects on _/e,o and Pr for several different gases including air can be

shown with the aid of figures 20 to 25 (ref. 10). Figures 20 and 21 give the variations of

a viscosity parameter and Prandtl number with temperature for a range of pressures

from 0.001 to 10 atmospheres in air. Note in figure 20 that real-gas effects do not

noticeably affect the viscosity parameter until a temperature of 2500 ° K and have only a

small influence up to 4000 ° K. Pressure independent equations of the type used at low

speed may then be useful up to this temperature. Real=gas effects are seen to affect the

Prandtl number (fig. 21) at a much lower temperature and have an increasing effect as

the temperature is increased. Similar observations can be made concerning figures 22

and 23 which give these two properties for CO 2. Comparisons of the viscosity varia-

tions from figures 20 and 22 for a pressure of 0.i atmosphere along with similar curves

for 100-percent N2 and a mixture of 50=percent N2 and 50-percent CO 2 are given in fig-

ure 24. It is evident from this figure that real=gas effects on viscosity are similar for

the various atmospheres considered so that composition is almost a second=order effect.

A comparable 15lot for Prandtl number is given in figure 25. Clearly, composition

effects are more important for this quantity. Maximum changes in heating rates due to

real=gas and composition effects for the atmospheres (and temperature range) considered

here on the order of 20 and 15 percent, respectively.
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CONVECTIVEAND RADIATIVE HEATING

Convective heating, which has already been discussed briefly in connection with the

real-gas effects, is due to the viscous nature of the flow adjacent to the surface of a body,

that is, in the boundary layer• The flow velocity at the surface is zero and, therefore,

has the same temperature as the surface. (This is not true in free molecule or slip flow,

but usually in these flow regimes convective heating rates are low and do not influence the

design of the heat shield.) Going away from the boundary layer, the temperature and

velocity increase. Since heat will be conducted where a temperature gradient exists, the

body surface will receive heat from the gas. On entry bodies traveling at high speed,

these gradients can become quite large, therefore, the heat transferred to the body is a

major concern in entry vehicle design.

Several authors have shown, references 9 and 11 for example, that the stagnation-

point convective heating rate can be approximated by equations similar in form to

C m V n
cP (1)

qc ,o R_

where for laminar flow, m = 0.5. Values of n from 3.0 to 3.22 have been proposed

along with a range of values for the constant Cc. In appendix B, an equation for qc,o

is derived, following the analysis of reference 12, in which n = 3 and Cc -" 15.25 × 10-6;

that is

I0-6 v_°°V°°3_ ft-lbf/ft2-sec (2)
15.25 ×

qc ,o=

While some of the assumptions made to obtain equation (2) are subject to question, ithelps

to understand why equations in the form of equation (I) are capable of correlating experi-

mental data as well as numerical solutions of the boundary-layer equations. (The objec-

tive of the heating analysis of ref. 12 was to obtainthe correct form of Clc,o and not

necessarily the magnitude.) In any case, the important fact about equation (2)is that it

shows thatthe convective heating rate varies roughly with the cube of the velocity,the

square root of the density, and inversely with the square root of the nose radius. Conse-

quently, the more blunt a body, the lower will be the convective heating rate in the nose

region. This fact was firstdiscovered by H. Julian Allen, one of the authors of

reference 12.

Appendix B also shows that when a straight-line trajectory is assumed, the maximum

convective heating rate during entry is given by
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{qc,o)max= 15.25x 10-61_| sin _E m VE3 ft_lbf/ft2_sec
3eRn CDA

(3)

The maximum rate occurs at an altitude of

1
h = _ In 3K

and a velocity of

Voo = VEe-1/6 = 0.85V E

(4)

(5)

Obviously, the maximum heating rate will vary directly as the square root of the ballistic

coefficient, the inverse scale height and the entry flight-path angle. If the Mars atmo-

spheres of table Ill were used, then the VM-8 and VM-2 atmospheres would be expected

to yield the maximum heating rate by virtue of their large inverse density scale heights.

Note also that the maximum heating rate is proportional to VE3. With Venus entry

velocities on the order of two to three times larger than those of a Mars orbit entry, the

maximum Venus heating rates will be substantially larger than those of Mars.

The total heat input to the stagnation point during entry is shown in appendix B

(also ref. 13) to be

15.25 x 10-6_'_ (C_A)I/2vE 2 ft_lbf/ft2
qc,o = (Rnfl sin _E)l/2

(6)

A comparison of this equation with equation (3) shows that the dependence on fi sin _ of

the total heat input is just the inverse of that for the maximum rate. Consequently, steep

entry angles and large inverse scale heights which give rise to large heating rates pro-

vide low total heat inputs. The Voyager-Mars set of Mars atmospheres, VM-1, VM-3,

VM-7, and VM-9, have the same low value of _ and yield the same maximum total heat

input during entry.

The preceding discussion of Mars and Venus convective heating rates and heat

inputs in terms of equations (3) and (6) may seem unwarranted if it is realized that these

two equations, though approximate, were derived with an air atmosphere in mind. Some

indication of the validity of using air heating-rate expressions for CO2-N2-Ar gas mix-

tures was given in the previous section, where in figures 24 and 25 the viscosity and

Prandtl number for several planetary gas mixtures were compared with those for air.

The differences in the calculated values of these quantities were postulated to have a

maximum effect on the convective heating rate on the order of 15 percent.

Experimental data on the effect of composition on convective heating have been

obtained by a number of investigators. Figure 26 contains two plots from a paper by

Horton and Babineaux (ref. 14), one of which compares heating rates for three CO2-N2-Ar
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gas mixtures with air. Generally, it canbe concludedfrom this data that composition
has a small effect onheating rate except for the gas mixture with 65-percent CO2
and 35-percentAr andeventhis effect is greatly reduced for flight velocities below
25000 ft/sec. The left-hand plot of figure 26 showsthe experimental datauponwhich
the air curve in the right-hand plot is based(includes data from ref. 15)alongwith pre-
dications basedon the methodsof Fay andKemp andHoshizaki (refs. 16and 17).

The discussion to this point hasnot consideredthe interaction of the gasesemitted
by the ablation material with the boundarylayer. The equationsand experimental data
discussedare for a clean, smoothsurface which acts as a heat sink. If the surface is
coveredwith ablation material, the heatabsorbedduring entry causesthe material to
pyrolize andemit gasesinto the boundarylayer. This process has the effect of reducing
the heating rate to the surface by a factor, determined in reference 18, of approximately

1

1 + const × Voo_/E V

The constant in the denominator depends on the type of ablation material and whether the

flow is laminar or turbulent. (Values of this constant will range from zero (for very low

heating rates) up to about a maximum of 0.4.) The quantity E V is the heat energy

required to vaporize a unit mass of the ablator. For sufficiently high velocities, the flux

of emitted ablation gases will lift the boundary layer off the surface. The flow adjacent

to the surface under these conditions is (depicted in the following sketch)

_--__.----._ Inviscid
Char _-_--_,_"-,_._ flow

my e r--_/y,z.,_/_ _---"_-'-_.
_____-._ Boundary

_I layer
Ablation

gases

Virgin / "_material

quite different from that for which ordinary boundary-layer solutions are applicable. One

attempt at a solution to this problem is given in reference 19. Additional discussion of

ablation material behavior is given in the next section.

Stagnation-point convective heating rates are useful in entry studies in which con-

vective heating is the major source of heat input to the surface. With some knowledge of

the distribution of convective heating rates around a given shape, a judgement can be made

of the relative amount of heat protection material that will be required for different tra-

jectories or entry bodies. However, when both convective and radiative heating are
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important contributors to the heat received by the surface, stagnation-point heating rates
are no longer sufficient (ref. 13). Sincethe distribution of heating rate is quite different
for radiation andconvection, it is necessaryto calculate the time variations of the heat
inputs to the entire body.

In reference 13 the total laminar convectiveheating rate for a series of shapes
with the samevolumes and diameters wascalculated by using Lee's similarity solution
(ref. 9). It was foundthat the results could be representedby the following equations

(_c= _Nc(D) 3/2 R_'--n"
4 qc ,o (Ta)

Qc- nNc(D)3/2
4 (Clc,°)R=l (Tb_

The symbol Nc is a shape factor which varied from 1.04 for a 26.5 ° half-angle blunted

cone to 0.96 for an Apollo-like body. With the constraint, then, of equal volume and

diameter, shape has only a minor affect on the total (entire body) convective heating rate

for a given velocity and altitude. Shape does affect the drag force, however, and bodies

with different drag coefficients will be subjected to a different maximum heating rate and

total heat input during entry. For more slender bodies than those of reference 13, the

integration of heating rates over the surface would no doubt yield values of Nc larger

than those mentioned previously.

Another way the body surface receives heat is by radiation from the hot gases in

the shock layer. The air passing through the shock is slowed down and a substantial frac-

tion of the kinetic energy of the flow is converted to heat energy. (It may be recalled in

our earlier example, normal-shock calculations, that the temperature behind the shock

was 20 200 ° R.) The internal degrees of freedom will become excited with the transla-

tional, rotational, and vibrational degrees of freedom being excited in that order. If the

vehicle velocity is large enough, the energy behind the shock will be sufficient to cause

the gas to dissociate and ionize. These highly excited molecules and atoms give off

radiant energy, a part of which will reach the body.

Immediately after the flow moves across the shock, the pressure and temperature

will rise abruptly with the temperature attempting to reach its perfect-gas value..(See

following sketch of flow behind shock.) However, the diversion of energy to the excitation

of various internal degrees of freedom and to the dissociation and ionization of molecules

and atoms causes the temperature to "peak out" and decrease to its equilibrium value.

During the time when the temperature changes too rapidly for the various degrees of
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freedom and the chemical reactions to reach their equilibrium state, the flow is termed

nonequilibrium flow. In the earlier shock calculation, the density behind the shock was too

high for the nonequilibrium zone to be significant, hence, the gas was assumed to achieve

its equilibrium state immediately upon passing through the shock. As density decreases,

the nonequilibrium zone becomes an increasingly larger portion of the shock layer. The

condition may be achieved where the entire shock layer is in a nonequilibrium state.

The radiation emitted from the nonequilibrium and equilibrium zones behind the

shock is, naturally, termed nonequilibrium and equilibrium radiation. For most entry

trajectories where radiative heating is important (i.e., relative to convective), the con-

tribution of nonequilibrium radiation is not a significant factor. Measurements have been

made of nonequilibrium radiative intensities (see refs. 20 and 21) for planetary gas mix-

tures, and though some discrepancies exist, as noted in reference 22, these data indicate

that, for the Mars mission considered, it can be neglected. Indeed for Mars entry veloci-

ties less than 20 000 ft//sec and entry angles below 25 °, even equilibrium radiative heating

is negligible. Therefore the remaining discussion will be restricted to equilibrium

radiative heating incurred during Earth and Venus entries.

Radiation from the gas in the shock layer and the ability of the gas to absorb radia-

tion is dependent on the temperature and density of the gas and the atmospheric composi-

tion. The radiation intensity will depend on wavelength, and the gas will absorb in a

wavelength dependent manner as well. The amount of radiant energy that a point on a
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body will absorb from anelemental radiating volumeof gas in the shock layer will depend
on the intensity of radiation, howmuch radiation is absorbedby the gas betweenthe sur-
face andthe volume element, the orientation of the volume element with respect to a sur-
face element, andthe absorption characteristics of the surface material. An analysis
taking into accountall of the knownvariables in the radiating shock-layer problem has
not beenattempted; however, methodsdo exist whichaccountfor the major ones.

To beginwith, it will be convenientto discuss radiative-heating equationswhich
result from a number of simplyfing assumptionsso as to achievesome insight into the
effects of ballistic coefficient and entry conditions. If it is assumedthat the shock layer
at the stagnationpoint is an infinite slab with a thickness equal to the stagnation-point
detachmentdistance, that the temperature is the sameeverywhere, andthat absorption
of radiant energy anddepletion of shock-layer energydueto radiation canbe neglected,
then simple power-law correlation equationsof the type derived for convective heating
rate canbe obtained. Perrine in reference 23 hasderived the following set for air to
cover a velocity range up to hyperbolic

----(_Ir,°lI = 1.585 X 104f P_l'78(V°°_12"5R n ft-lbf/ft2-sec (V > 35 000 ft/sec) (8)\ps) \104/

(Clr,o) 2 = 2.331_s11.78/V \19.5l-_) Rn ft-lbf/ft2-sec

(30 000 ft/sec < V < 35 000 ft/sec) (9)

(Clr,°)3 - 3

(Clr ,o)1
(25 000 ft/sec < V < 30 000 ft/sec) (10)

For heating equations that have the form

maximum occurs where
_e-1/n

V_ = VEe

plvoon

so that

(V_)cl_=max = VEe-1/n

This assumes that the velocity is given by

it may be easily verified that the

(11)

V
oo

-CDPsA e-_h

= VEe 2tim sin q5E

(see appendix C) and the density is approximated by

with the exponents of equations (8) and (9) results in

p = Pse-_ h. Using equation (11)

(12)
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for equations (8) and (10) and

(Voo)_lr,o=ma x = 0.867V E
(13)

(Voo)_lr,o=max = 0.912V E (14)

for equation (9). A comparison of equations (13) and (14) with equation (5) shows that the

maximum radiative heating rate will occur before that for convection.

Expressions for the maximum heating rate itself are easiiy obtained from equa-

tions (8) to (12). They are

(2/3sin_bE m 1.78_1"78(VE_ 12"5= 1.585 x 104 1"2:5) \T_) Rne0s %A
ft- lbf/ft2- se c

(V E > 40 000 ft/sec) (15)

(qr,o) 2,max
2.33/2/7 sin q5E

\ eP s

\1.781 V \19.5
m 1.781 f

CD A 1-_. 5) \7"_] Rn ft-lbf/ft2-sec

(33 000 ft/sec < V E < 40 000 ft/sec) (16)

(qr)l,max

(_lr ,°)3,max - 3
(V E < 33 000 ft/sec) (17)

Note that the range of applicability for equations (15) to (17) is given in terms of V F.

Clearly, the dependence of the radiative heating rate on the entry conditions, the density

scale height, and ballistic coefficient is greatly different from that of the convective

heating rate. It should be pointed out that the dependency of Ps indicated in equations (8)

to (10) and (15) to (17) is fictitious. The numerical constant in these equations includes a

factor ps 1.78 where Ps is approximately 0.0027 slug/ft 3.

The total radiative heat input to the stagnation point during the entire flight is

obtained with the aid of appendix D and is given by

O.78

6.54 × 10-2(/3 sin _E)

(qr) 1 - (ps)l.78

f m
tC---_) \1-_) Rn ft-lbf/ft2

(V E > 40 000 ft/sec) (18)
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(qr)2 =
4.05 × 10-6(/3 sin _bE)0"78

(ps)l.78 \ 1--_) Rn ft-lbf/ft 2

(33 000 ft/sec < VE < 40 000 ft/sec) (19)

(qr) 1

(qr)3 - 3 (VE < 33 000 ft/sec) (20)

Equations (15) to (20) show, in contrast to those for convective heating, that increasing

the entry angle causes both the maximum radiative heating rate and heat input to increase.

Curves enabling the determination of the exponents and factors in radiative heating

rate equations similar to equations (8) to (10) for mixtures of CO 2 and N 2 are given in

figure 27. These curves are based on the data of reference 24 and the equation given in

the figure is derived on the same basis as equations (8) to (10). The data of reference 24

are for a range of free-stream velocities from roughly 16 000 ft/sec to 26 000 ft/sec and

free-stream densities from 0.004 to 0.08 times sea-level density. These data show that,

except for high percentages of N2, radiation intensity levels exceed those of air with the

difference increasing with velocity. Two more recent papers on the radiative properties

of planetary gases are references 25 and 26.

As mentioned previously, the distribution of convective and radiative heating rates

around a body are quite different. For example, the convective heat rate on a sphere

varies approximately as the (cos 0) 3/2 while the radiative heating rate for a transpar-

ent, adiabatic gas cap varies as (cos 0) n where n may be anywhere between 6 and 8

depending on the velocity. In reference 13, the radiative heating rate distributions on the

shapes at the top of figure 28 were derived and integrated over the surface to obtain the

total-body radiative heating rates. These were then integrated over the entire trajectory

along with the total-body convective heating rates given by equation (7). Some typical

results are shown at the bottom of figure 28 for m/A of 1.55, an entry flight path angle

of 10 o, and entry velocities of 36 000, 40 000, and 44 000 ft/sec.

At the top of figure 28 are the total heat inputs to the stagnation point. It is clear

from a comparison of the stagnation point and entire body heat inputs that when radiative

heating becomes important, stagnation-point heating rates and heat inputs are no longer

accurate indicators of the relative heat load incurred by bodies of different shape.

Another fact evident from figure 28 is that as Earth entry velocities increase beyond the

40 000-ft/sec level, the more slender bodies will be subjected to a smaller total, convec-

tive plus radiative,heat input. Itshould be remembered thatthe curves in this fig-ureare

based on the transparent adiabatic shock-layer assumption and any conclusions derived
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from it may require modification whentheseassumptionsare removed. In the remaining
part of this section additional discussion of this matter will be given.

Thepreceding discussion of radiative heatinghas beenfor a gas which is trans-
parent to radiation andfor which no accountwas madeof the radiant energy given up by
the gas to radiation. Removalof these assumptionswill lead, clearly, to a more exact
solution.

For air, nontransparentradiation generally occurs only for wavelengthsless than
1200A andresults from the recombination of N+ andO+ ions with electrons andfrom
bound-boundatomic electron transitions. In reference 7, the absorption coefficient for
air wasapproximatedby the two-step model shownin figure 29. Onestep is for the wave-
length rangefrom 400 ._ to 1130 A and accounts for the optically thick, or nontransparent,

radiation just discussed. The second step is for wavelengths from 1130 /_ to infinity and

accounts for optically thin, or transparent, radiation from molecular band systems, free-

free electron transition, and the photo-ionization of O, as well as the electron recombina-

tion of N + and O + and the bound-bound atomic electron transition for wavelengths greater

than 2000 ._. It should be noted that the radiation spectrum for bound-bound transitions

of atomic electrons consists of a very thin line with a large absorption coefficient which

is bounded by wings with a smaller absorption coefficient. In reference 7, it was assumed

that the line centers were self-absorbed so that only the wings of the lines needed to be

considered.

Another approximation to the absorption coefficient for a high-temperature gas,

which is frequently used, is the gray absorption coefficient. This is a weighted average

of the frequency-dependent absorption coefficient which is used for all wavelengths. The

gray absorption coefficient model is shown in figure 29 as the dashed line. In general,

the gray absorption coefficient is transparent, and hence it does not properly represent

the nontransparent phenomenon.

Calculations using the two-step absorption coefficient discussed previously have

been made in reference 7 for the flow fields about spheres of various sizes traveling at

hyperbolic speeds in the Earth's atmosphere. A time-dependent finite difference method

is used to perform the calculation. The radiation which is absorbed at each point in the

flow field is dependent upon the radiation which is emitted elsewhere and which passes

through the point. In order to estimate this absorbed radiation at each point, the radiating

shock layer is approximated by an infinite one-dimensional slab as shown in the left of

figure 29. The width of the slab is the same as the local shock-layer thickness and the

profiles of the gas properties across the slab are the same as those across the shock

layer. This approximation is made because the integration over a one-dimensional slab

can be performed numerically with relative ease, whereas the integration over a multi-

dimensional shock layer involves a prohibitive amount of work.
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In figure 30 results are shownfor the flow of radiating air over 3-inch and 5-foot-
radius spheres traveling at 50000ft/sec at an altitude of 190000feet in the Earth's
atmosphere. Calculations are madefor both adiabatic andnonadiabaticflow. It is seen
that the nondimensionalsurface heat flux distributions for bothspheres are essentially
the same for both the adiabatic andthe nonadiabaticmodels. This similarity in the non-
dimensional surface heat distributions exists althoughthe shock layers aboutthe two
spheresdiffer appreciably. For example, it is seenin the left of figure 30that the
enthalpyalongthe stagnationstreamline of the 3-inch sphere is considerably higher than
the stagnationstreamline enthalpyof the 5-foot sphere near the bodysurface. This
depletion of the enthalpy in the shock layer results becausethe high-temperature gas is
releasing energy by radiation. It shouldbenotedthat the adiabatic andthe nonadiabatic
models are in fair agreementfor the stagnation-pointheat flux for the 3-inch sphere.
However, for the 5-foot spherethe adiabatic model yields a value for the stagnation-point
heat flux which is three times higher than the nonadiabaticmodel.

It is shownin figure 31 that the relative contributions to the normalized surface heat
flux of the parts of the spectrum belowand abovea wavelengthof 1130A differ for the two
spheres althoughthe two normalized distributions are virtually the same. For the 3-inch
sphere, the optically thick portion of the spectrum below1130._contributes more than

half of the radiation which impinges on the body;whereasfor the 5-foot sphere, this por-
tion of the spectrum contributes about 10percent of the surface radiation. The interpre-
tation is that the shock layer adjacentto the bodyhasbeencooledby radiation for the case
of the 5-foot body, andthis cooledair absorbs muchof the optically thick radiation being
emitted by the hot air near the shock. Sincethe air adjacentto the 3-inch sphere hasnot
beencooled, it contributes to the nontransparentradiation which impinges on the surface.

It has beenshownin figures 30and 31that the nondimensionalsurface heat flux dis-
tribution for a sphere traveling at 50000ft/sec andanaltitude of 190000 feet in air is
not affected appreciably by the size of the sphere. To examine the possibility that changes
in these free-stream conditions could affect the shapeof the distribution, calculations
were madefor a 5-foot sphere traveling at speedsof 50000,41 000, and34 000ft/sec at
_ltitudes of 220000, 190000, and 140000feet. The nondimensionalsurface heat flux
distributions for these casesare shownin figure 32. It is seenthat the altitude has no
appreciable effect on the shapeof the distribution andthat the vehicle speedhas a very
pronouncedeffect. It shouldbe notedthat the results shownin this figure are for the

stagnation-point heating rates are given in reference 27.

An analysis similar to that of reference 7 has been carried out in reference 28 for a

gas mixture appropriate to Venus. With the results of this analysis, Norman in refer-

ence 29 has calculated the stagnation-point and cone-edge heating rates for a series of
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cones with various nose radii and half-angles. Consistent with figure 30, reference 29

indicates a much less rapid increase in radiative heating with increasing bluntness than

evidenced in figure 28. Figure 33 illustrates the type of results obtained in reference 27

and shows the effect on radiative and convective heating of increasing nose radii for two

values of m/CDA. Increasing the nose radius from 1 foot to 3 feet causes the maximum

radiative heating rates to increase roughly by a factor of three while convective rates are

reduced by one third. The total radiative heat input to the stagnation point for the same

increase in Rn is approximately doubled while convective heat inputs are reduced by

40 percent. Since m//CDA is assumed constant as the nose radius, and hence drag,

increases the variation of radiative and convective heating rates and heat inputs for a

constant mass entry vehicle cannot be obtained from figure 33. If drag changes were

accounted for, then the rate of increase of radiative heating rate and heat input with

increasing nose radius would be smaller. Results similar to those depicted in figure 33

for the stagnation point are given for the cone edge and also for various cone half-angles

and entry velocities in reference 29.

AERODYNAMIC HEAT PROTECTION SYSTEMS

The three most practical types of heat shields are: a radiative heat shield, a heat-

sink heat shield, and an ablative heat shield. The latter is by far the most common since

it has become possible to tailor an ablation shield for a particular maximum heating rate

and total heat load. In figure 34 (ref. 30) the capabilities of the various types of heat

shields in terms of their ability to withstand heating loads (total heat input) and heating

rates are shown. A molybdenum radiative shield can accept very large heat loads but

heating rates beyond 40 Btu/ft2-sec will cause excessive surface temperatures. Copper

is an extremely good heat sink; however, when the heat loads exceed 10 000 Btu/ft 2, a heat

shield of this metal becomes too heavy to be practical. Present-day ablation-material

technology is capable of handling efficiently almost any combination of heating rate and

heat input including many combinations where metal shields are adequate. An entry from

orbit into the Mars atmosphere provides maximum heating rates on the order of 20 to

60 Btu/ft2-sec and a maximum heat input on the order of 2000 Btu/ft 2. While these inputs

are within the capabilities of a heat-sink heat shield, aeroshells with ablative coatings

are lighter. Heat loads for a Venus entry are in the 4000- to 6000-Btu/ft 2 range, and an

ablative heat shield is required.

Many types of ablation materials have been devised; the basic constituents of com-

posite ablative materials are listed in table V. Figure 35 (ref. 30) depicts the manner in

which these materials dispose of heat. A ceramic ablation shield is illustrated for com-

parison on the left of this figure. Aerodynamic heating of the virgin material will cause

it to melt and flow as a liquid along the surface. Some of this liquid at the liquid gas
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interface may vaporize andbe transported awayby the airstream. During ablation, heat
is dissipated in bringing aboutthe phasechangeandis also transported awayfrom the
surface by convectionin the liquid andgas layers. Thequartz ablation shield, formerly
used on ICBM nose conesbehavesin this way.

On the right of figure 35 is illustrated a charring ablation shield. Pyrolysis of the
virgin material produces a carbonaceouschar which cansustain high surface tempera-
tures. Heat energy is disposedby radiation from the surface, by convectivetransport,
and by pyrolysis within the material. It shouldbe notedthat the ability of an ablatorts
char to withstand viscous shear forces varies widely; often a honeycombreinforcement
is usedto improve the shear tolerance of an ablator.

The capability of the ablation material to disposeof heat cannotbedefined without
reference to the conditions of heating. The enthalpyof the airstream andthe type of
heatingencountered(whether convectiveor radiative heating)may play an important part
in the responseof the material andhencein the selection of a material for a particular
mission. Clearly a number of factors must be consideredto arrive at the optimum com-
bination of resin and filler: first, the amountof heat it candisposeof per poundof
material; second, its conductionproperties; third, the ability of the char to withstandthe
viscous shear forces; andfourth, its ability to withstandlaunchvibration and acceleration
loads. For a Mars andVenusmission, additional criteria are the ability to withstand
spacevacuum,coid soak, and sterilization effects. Materials most efficient in disposing
of heat (suchas graphite composites) are usually goodconductors (see fig. 36); hence,
they may require some insulation on the back side to prevent the structure from becoming
excessively hot. Low-temperature low-density ablators are muchbetter insulators but
substantial material losses over long heatingperiods may require muchthicker ablation
shields and cancel out anyweight advantage. Most oftenthe heat-shield material selected
for a given application is a compromise betweenseveral candidates. Note in figure 36
that the compositecharring ablators have goodinsulation qualities up to temperatures of
4000° R.

Table VI gives a list of measuredcharacteristics of a number of ablators andshows
again that the lheavyablators with high-energy-disposal andtemperature-tolerance ability
are also the best conductors.

The ablation-material weight andthickness requirements for Mars andVenus cap-
sules are given in table VII where the materials shownare those whoseproperties were
listed in table VI. It is clear from the weights listed for the Venusdirect entry mission
that the proper choice of heat-shield ablation material caneffect a substantial weight
saving. Mars heat-shield requirements are given for a 10.5-foot-diameter aeroshell,
whereas the present Viking configuration is 11.5 feet. Reference31 contains additional
information on ablative heat shields for Mars andVenusentry vehicles.
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AERODYNAMICFORCESAND MOMENTS

Force and momentdataare usually divided into two types, static anddynamic, and
within thesetypes they are further subdividedaccording to velocity range. As indicated
earlier, there is anotherdistinction required whenflight at near-orbital velocities is
considered, that is, the distinction betweenideal and real-gas data. Fewground-test
facilities are available to simulate more than two of the environmental factors suchas

Mach number, Reynoldsnumber, andreal-gas effects at the same time, andtheory must
beusedto "extrapolate" perfect-gas data to real-gas conditions or low Reynoldsnumber
data to high Reynoldsnumber conditions. In somecasesthe uncertainties may not affect
the attainment of mission objectives andthey can be ignored or gradually eliminated by
the analysis of flight data. Most of the time, however, a strenuous effort will be madeto
obtain the most accurate data possible before committing a vehicle to flight.

Static force and momentsare obtainable in most all speedregimes andin a variety
of ways. To illustrate the point, static datahavebeenobtainedfor the 120° cone in the
Langley spin tunnel, Langley high-speed7- by 10-foot tunnel, Ames 2- by 2-foot tran-
sonic tunnel, Langley Unitary Plan wind tunnel, JPL 20-inch supersonic and 21-inch
hypersonictunnels, NOL pressurized ballistic and 1000-foot hyperballistic ranges (at
subsonic,supersonic, andhypersonic speedsin air), NOL pressurized ballistic range in
CF4 at hypersonic speeds(to simulate real-gas effects) andflight tests. Sometypical
wind-tunnel results for a series of coneswith half-cone angles from 40° to 90° are plotted
in figure 37. Of particular interest is the nonlinear variation of CD and CL with
increasing cone angle. This points up the dangers inherent in using interpolated data
without a full understandingof flow phenomena. The flow aheadof conesin the shock
layer is supersonic until half-cone angles slightly in excess of 50° are reachedwhereupon
it becomessubsonicandthe trend of the drag andlift curves with increasing cone angle
changesabruptly.

As notedpreviously another type of facility in which blunt-body static aerodynamic
datahasbeenobtainedis the ballistic range. Figure 38shows somestatic pitching-

momentderivatives Cm_ obtainedin the NOL ballistic ranges alongwith other types of
data for the 120° cone (refs. 32 to 34). The point to note here is that whenall the data are
transferred to the momentcenter of the ballistic-range models, there is excellent correla-
tion. Whenthe data are plotted for the momentcenter at the nose, the ballistic-range data
are substantially more negative. The reason for this is that the values of CN_ for very
blunt conesmeasuredin the ballistic range are not sufficiently accurate for transferring
the pitching moments;as the bodies becomemore slender, the accuracy improves. In
anycase, the values of Cm_ for the ce,lter-of-gravity location of the model are accu-
rately determined.
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It was shownin figure 37 that increasing coneangle producedsignificant changes
in the drag. Another way of increasing bluntnessandhencedrag is to take a cone and
round off its apex. The effect of this blunting on the forebody pressure drag of a 120°
coneis shownin figure 39 (from ref. 35). The results shownhere are for Machnumbers
of 3, 5, and 10 andfor a range of nose-radius-to-base-radius ratios which include the

pointedcone Rn//Rb= 0 and the spherical cap Rn/R b = 2.0. Of particular note here is

the rapid increase in drag that occurs as the blunting causes the slopes near the outer

edge to become steeper, that is, as Rn/R b -* 2.0.

Some indication of the influence on static stability of spherical blunting can be

obtained from figure 40 (ref. 36). The pitching-moment plot at the top of this figure

shows that the spherical cap has greater stability than the 120 ° cone. This is somewhat

misleading since the moment center for both bodies is at the base, and for a given pay-

load shape and volume the center of gravity of the cone would be expected to be further

ahead of the base than on a spherical cap. Even accounting for differences in practical

center-of-gravity locations, it is clear that the stability of the spherical cap will be com-

parable to the 120 ° cone. Another point of interest in figure 40 is the large difference in

the location of the center of pressure of the two bodies (Xcp measured from base).

Data of the type shown in figure 40 provided some of the impetus for investigating

cones with apex angles greater than 120 ° for a Mars capsule where high drag is essential

for the most rarefied atmospheres postulated. Figure 41 shows some of the supersonic

data obtained for a 140 ° cone compared with data for a 120 ° cone (ref. 37). It can be seen

that the 140 ° cone has roughly 5 percent greater drag and has comparable stability for the

realistic moment centers shown on the right of the figure. Additional comparisons are

afforded by the drag-coefficient data plotted in figure 42. These results were obtained in

the NOL pressurized ballistic range (ref. 34) at high Mach numbers in air and CF 4. The

latter was used since it has a low ratio of specific heats (--1.15) similar to that of gases

in the shock layer of bodies traveling at entry speeds. Clearly, the data for air are com-

parable to those previously presented; the data for CF 4 indicate a higher level of drag,

particularly for the 140 ° cone (note value of 1.76 for CD). The reason that the 140 ° cone

appreciates more in drag than the 120 ° cone when tested at low values of 3, is that the

flow field behind the shock on the 140 ° cone remains subsonic to much lower values of

3, than that of the 120 ° cone. It can be seen in figure 43 that the drag of a 140 ° cone

increases for values of 3' all the way down to 1.1 after which the flow becomes super-

..... ,_k_ ._.... • ^ t,_ao ...... _h,_ ,_h,_v h_net will diminish _fter a value of v = 1.2

is reached. With the aid of figures 44 and 45 (ref. 38), this phenomenon can be more

easily seen. Figures 44 and 45 depict the shock shape and pressure-distribution calcula-

tions for 120 ° and 140 ° cones where the ratio of specific heats is 1.17. In figure 44 for

the 120 ° cone, the shock is supersonic-like, that is, straight, and *_ pressure _+_._h,,_n,_
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is flat as that for supersonic coneflow. Figure 45on the other handshowsthat the 140°
conehas a shockshapeandpressure distribution typical of blunt-body subsonicshock
layers.

Dynamic forces and momentsare also obtainable in many facilities using various
techniques. In contrast to the measurementof static force and moments,where all tech-
niquesyield accurate data (except in the casenoted earlier), the measurementof dynamic
forces and momentsdo not yield uniformly accurate data andevenaccurate data may be
difficult to interpret. Oneof the most commonfacilities for measuring the dynamic
dampingderivative is the ballistic range. In a ballistic test, the altitude andtime his-
tories are determined by taking shadowgraphsandrecording the time that the model
passeseach station. To determine the damping requires three to four oscillations over
the distancewhere shadowgraphsare being taken. Blunt coneshave so muchstatic sta-
bility that in order to get the three to four cycles for a solid metal model, the dynamic
pressures must be extremely low. Whenthe dynamic pressure is reduced, the damping
is also reduced, and it becomesvery difficult to measure accurately anyangle-of-attack
amplitude decay. To circumvent this problem, a heavymetal base extensionor other

ballasting andconstruction features are used; this reduces Cma and also in somecases
the mass inertia ratio, both of which are effective in reducing the frequency. Typical
homogeneous,solid, blunt-body values of Cmq+ Cm& given in figure 46 for the 120°
coneindicate the problem that exists whenunballastedsmall models are used. The uncer-
tainty in the measurementsshownby the line on either side of the symbol is so large as
to render the datauseless exceptas a trend indicator.

Another difficulty with free-flight data (both ballistic range and wind tunnel) is that

the damping(or CD, Cma, CNa) is an averageover the whole angle-of-attack range
through which it oscillates. Unless a large number of tests at various amplitudes are
made at the same flight velocity, the variation of these quantities with angle of attack can-
not be ascertained. Very often scatter in the free-flight data canbe ascribed to varia-
tions with angleof attack of the quantity being measured.

Someinsight into the angle-of-attack variation of the dampingmoments canbe
obtainedby using the forced-oscillation technique. This technique measures the damping
at discrete anglesof attack whenthe model is oscillated with a small amplitude typically
1o or 2° aboutthe desired angleof attack. This type of testing has two drawbacks: First,
a sting is required which alters the flow in the base region; and second,the motion for
which the dampingis measured is not a goodsimulation of the actual free-flight motion
except for small amplitude motion aboutthe trim angleof attack. Nevertheless, these
datadoa very effective job of explaining free-flight measurementsof large amplitude.
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Figure 47 gives a plot of Cmq+ Cm& for the 120° and 140° cones at Machnum-
bers of 3 and 5 obtainedby the forced-oscillation methodin the yon K_rm{m gasdynamics
facility 40-inch supersonic tunnel (A) at Arnold Engineering andDevelopmentCenter
(ref. 39). Thesedata indicate that the 120° coneis slightly more stable than the 140°

cone andthat both yield values larger thanNewtonianpredictions. A plot of Cmq+ Cm&
for the 120° coneat a Machnumber of 5.02 from 0° to 34° angle of attack is given in
figure 48. The nonlinearity of the curve shownhere points up the value of a forced-
oscillation test andat the same time indicates the difficulty of interpreting free-flight
data.

TIME HISTORIES OF HEATING RATES, DYNAMIC PRESSURES,

AND DECELERATIONS

In carrying out trade-off or parametric studies for atmospheric-entry capsules,

the point-mass equations of motion are usually used to predict the trajectory and the

trajectory-dependent quantities such as convective and radiative heating rates, free-

stream dynamic pressure, and impact point. It should also be noted that with the analy-

sis of reference 40 it is possible to do parametric studies of the dynamical behavior of

the entry vehicle. From this paper a "first cut" evaluation of its dynamic stability as

well as the maximum oscillatory frequency and angular acceleration may be obtained.

Once the capsule system becomes well defined, the six-degree-of-freedom motion equa-

tions may be employed to assess in a more exact fashion the effects of the entry vehicles

oscillatory motion on the trajectory and heating.

Results of parametric studies for the Mars and Venus missions described earlier

are given in references 3 to 5. Curves illustrating the type of data obtained in these

studies are shown in figures 49 and 50. They were calculated by using the point-mass

trajectory equations derived in appendix E and a convective heating rate equation similar

to equation (2). The radiative heating calculations shown in figure 50 were obtained from

reference 29 and based in part on the analysis of reference 28. Figure 49, which shows

results for several Mars orbit entries, substantiates the heating trends discussed pre-

viously. Increasing m/CDA , entry angle, entry velocity, and inverse density scale

height _ causes the maximum convective heating rates to increase. The total heat

input during entry is decreased when entry angle and inverse scale height are increased.

_{axii-num_..... : .... i_o,_1y_n_ifiv¢__-O entry _ngle and increase

with increasing m/CDA. The effectof decreasing entry velocity from 16 000 to

14 000 ft/sec for the VM-8 atmosphere and _bE = 15° results in an anomalous increase

in maximum dynamic pressure and deceleration. This is typicalof the kind of results

obtained for entry angles which are near the skipout boundary.
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Table VIII lists the maximum values of the curves shownin figure 49plus data on
several 12000-ft/sec entries. For m//CDA= 0.3, the maximum stagnation-point heating

rates vary from 16.8 to 65.5 Btu/ft2-sec. Total heat inputs to the stagnation point range

from 719 to 2776 Btu/ft2. (Note that for nose radii greater than 1.0 foot these values will

be reduced by the square root of the nose radius.) Clearly, the heat shield will have to

be designed to the large total heat input of the VM-9 atmosphere while the aeroshell struc-

ture must be designed to accommodate the large dynamic pressures incurred during

entry into the VM-8 atmosphere.

Curves for Venus entries similar to those just discussed for Mars are shown in

figure 50 for a 55 ° half-angle cone (obtained from ref. 29). The ballistic coefficient for

these calculations is 0.3 and the entry angle is 40 ° . Results for three entry velocities

typical of the various Venus missions discussed previously are given. It can be seen in

figure 50 that the maximum dynamic pressures, decelerations, and heating rates are over

an order of magnitude higher than they are for Mars. Also, it is evident that the duration

of the dynamic pressure, deceleration pulses, and heating rate is much shorter. This is

due primarily to the steeper entry angle, 40 ° versus 15 ° or 20 ° .

Figures 50(c) and 50(d) for a 38 000-ft/sec entry show that both the radiative and

convective heating rates are significant. Three separate contributions to the radiative

heating rate are plotted, the equilibrium, nonequilibrium, and ultraviolet. At the stagna-

tion point, all three contribute significantly to the total heat input, while at the cone edge

the shock layer is not as hot as the stagnation-point region and ultraviolet radiation is no

longer a factor. As the entry velocity is increased beyond 38 000 ft/sec, the shock-layer

temperatures will increase and ultraviolet radiation can become significant in the cone-

edge region.

The abrupt increase in the convective heating rate at 8.5 seconds is due to transi-

tion to turbulent flow. Obviously, after transition occurs, the cone-edge heating rates

become comparable to those at the stagnation point. Criteria available to determine

whether the flow is laminar or turbulent are empirical and unreliable. One procedure

is to assume that the flow is turbulent when the local Reynolds number exceeds some

arbitrary value, usually on the order of 300 000 to 400 000. Another criterion is based

on the local momentum thickness Reynolds number. The latter was used in reference 29

and a value of 250 was assumed. Increasing the cone angle will probably delay transition

to a later point in the flight and thus reduce the convective heat input, but this advantage

must be weighed against the increase in radiative heating that will also result. Calcu-

lations of the stagnation-point and cone-edge heating rates for a range of cone angles and

nose radii are given in reference 29.
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CONCLUDINGREMARKS

The discussion of problems associatedwith Mars andVenus entry vehicles has
beendirected mainly at those aspects related to fluid mechanicsandgas dynamics.
Elementary considerations involved in the calculation of convective andradiative heating
rates andin the selection of a heat-shield material are reviewed. Aerodynamic force
and momentdata for blunt conesfrom a number of different facilities are illustrated and
someof the shortcomings of various test techniquesare pointed out. The importance of
considering real-gas and atmospheric-composition effects in the extrapolation of low
Machnumber (say less than 10)aerodynamic andheatingdata to high Machnumbers is
emphasized. Mathematical derivations have beenavoidedexceptwhere anattempt was
madeto illustrate the important parameters governingaerodynamic heatingand free-
stream dynamic pressure. Thesederivations stem mainly from references 12and 13.

Time histories of aerodynamicheating, accelerations, and dynamic pressure were

given for values of m/CDA and entry conditions appropriate to Mars and Venusentries.
it was assumedin these calculations that the entry vehicles were nonlifting, had no motion,
anddid not lose mass (from the ablation shield, for example)during entry. For Venus,
the mass loss from the heat shield is large enoughfor the highest velocity entries that
the trajectory prediction could be improved if mass loss were considered. Ablation-
material losses during Mars entry are trivial. Motion effects are very muchconfigura-
tion andmission dependent. The detail variation of the aerodynamic forces andmoments,
the aerodynamicdamping, vehicle mass and inertia, entry conditions including initial
angle of attack, rotational rate and spin rate, andthe properties of the atmosphere itself
all affect the entry spacecraft motion and henceits trajectory.

Normally whenprecise entry-vehicle trajectories andmotions are required, com-
puter programs utilizing the six-degree-of-freedom equationsof motion are employed
(see, for example, ref. 41). Little insight is afforded into the governing parameters, how-
ever, by six-degree-of-freedom computationsexceptthrough a number of runs. Insight
is most easily obtainedfrom analysessuch as presentedin references 40 and42 to 44.
Reference 40 treats the motion of nonspinningentry bodiesand references 42 to 44 the
spinning case.

As notedpreviously, the few calculations presentedin the present paper were for
nonlifting vehicles. Manypresent-day spacecraft are designedas lifting vehicles so as

_lll_tllllt_U

Mars entry vehicle, lift enables it to reach a prescribed velocity at a higher altitude or a

fixed altitude with a lower velocity than is possible with no lift. In addition, a lifting

spacecraft permits a higher entry weight than a nonlifting one for fixed terminal conditions.

Further information on the advantages and problems of lifting entry may be obtained from

references 45 to 47.
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Onefinal topic of importance for Mars andVenusentries which, althoughit relates
to aerodynamics,has not beencovered in the present paper is decelerators. Much
research has beencarried out in the past few years to provide a reliable high-drag para-
chute for the low-density Mars atmosphere. References48 to 50discuss results of some
of theseprograms and also someof the decelerator options opento the designer. Para-
chutetechnologyrequired for Venus mission of the type described previously is the same
asthat for low-velocity low-altitude Earth applications. A general state-of-the-art study
is given in reference 51.

In conclusion, it shouldbe pointedout that only a general, broad-brush treatment of
a few selectedtechnologyareas hasbeenattempted. More detailed information can be
obtainedon most of the subjects in the referenced documents.
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APPENDIX A

DERIVATION OF ATMOSPHERIC DENSITY AND PRESSURE EQUATIONS

The purpose of this appendix is to show how the pressure, density, temperature,

and composition are related through the use of the barometric equation

dp = -pg dh (A1)

and the equation of state

p = pRT (A2)

First differentiate equation (A2) to obtain dp and substitute it into equation (A1) to

arrive at

RTdp+RpdT+pTdR=-pgdh

Dividing by pRT, the basic differential equation is obtained

dp dT dR g dh (A3)
P-- + -T-" + "R" = RT

For complicated variations of temperature and composition (variations in R) equa-

tion (A3) must be integrated numerically; for atmospheres where these quantities are

constant or vary in a simple manner closed-form expressions can be derived. For

instance, with g, R and T

by inspection to yield

With the definition

constant (g = gs, T = Ts) , equation (A3) can be integrated

p = ps e-gsh/Rw (A4)

RTs 1_.. (A5)
Hp =

equation (A4) becomes

-Ds h
p = ps e

The pressure may now be determined from equations (A6) and (A2) as

(A6)

U = Wse -13sh (AT)

For a temperature profile similar to that of the VM-8 atmosphere, the density and

pressure can again be obtained in closed form (R and g assumed constant). See fol-

lowing sketch:
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h

hT

T T Ts
T

With T now given by

equation (.43) can be integrated to obtain

T=T s+rh (0 <h =<hT) _ (A8)

J
_g____s_I

p=ps i + 0 < h <h T

Equations (-48) and (A9) are then substituted in equation (A2) to determine the pressure as

gs

(1 rh_-_-f (0 < h < hT) (.410)P = Ps + Ts ]

Above the tropopause where T = TT, integrationof equation (-43)results in

p = pT e

Note that pT e_hT

eq. (A6)). Setting

in terms of surface quantities as

p = PTeflhTe-_ h

can be thought of as an effective surface density (compare with

h = h T in equation (A9) determines the tropopause density PT

_g_.!s.1

PT = Ps +

In equation (All) /3 is defined by

(h > hT) (All)

As before, substitution of

(A12)

RT T
= _ (A13)

gs

p (eq. (All)) and T into equation (A2) yields the pressure

p= pT e-_(h-hTl (h > hT) ('414)
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APPENDIX A

where

allowing for the variations of the gravitational constant.

profile as in the preceding sketch and

/ rs \2

the integration of equation (A3) gives the density as

Fgrs 2

RT s [l_rsF_(l+h_ RTs 2 I-
Ts ]\ rs]/1 + Fh\

P = Pse {-_ . [-/
Fh +

I+T-- _

PT is obtained from equation (A10) with h = h T. Thus

gs

PT = Ps 1 + (A15)

One further element of realism may be added to the solution of equation (A3) by

With the same temperature

(A16)

(o<h<hT) (A17)

and

Expressions for PT' p, and
respectively.

gs h - h T

p=PTeRTS(l+_s)II+_s) (h > hT) (A18)

PT are determined as in equations (A12), (A14), and (A15),
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APPENDIX B

STAGNATION-POINTCONVECTIVEHEAT TRANSFER

The following derivation of the stagnation-point convective heating rate equation is
the same,except for minor modifications andadditions, as that given in reference 12. It
is repeatedhere becauseof the insight it affords into the basic parameters governing
convectiveheatingduring entry. In addition, since reference 12may not be readily avail
ableto the reader, it provides a measure of completeness. The flow situation appropriat
to the present analysis is given in the following sketch:

V
=====_ (

Bow shock

.S_tagnation point

n = Body radius

\

The convective heating rate can be expressed as

_ • Nurkr(Tw - T_)

dt = qc,o ; Rn

where Nu r is the Nusselt number, a form of heat-transfer coefficient, k r

ductivity of the gas at the recovery temperature of the gas Tr, and T w

perature at the wall. The recovery temperature Tr is given by

Tr= T_oll + f(Pr)_-_ M_21

and with the approximation Pr = 1, Tr becomes (see section entitled "High-

Temperature Gas Physics" for discussion of Pr)

The addition of T w to both sides of the negative of equation (B2) yields

"w-Tr=-(T_-Tw+_M_2,_)2

(B1)

is the con-

is the gas tern-

(B2)

(B3)
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Noting that for large M

Too - T w << _ M_o2T_o
2

equation (B3) can be reduced to

T w - T r = -_ M_2T_ (B4)

With the substitution of the relationship

M_o2T_ =

2
V_

(_ - 1)Cp

into equation (B4), there results

V:o2

Tw - Tr = 2Cp

According to Sibulkin (ref. 52) Nur is given by

(B5)

Nu r = 0.934(Re) 1/2(pr) 2/5 (B6)

Again with Pr = 1 and

equation (B1) becomes

Re --

pV_Rn

?7 r

(B7)

But

so that

qc ,o= 0.471PV-_Rn V_2krRncp

UrCp

k r

- 0.47_ Voo2 I_r-_p )

-Pr=l

(BS)

Assuming

and making the approximation that

qc,° = 0"4_ _nn V°°2

_r = 2.31 x 10-8Tr 1/2

Tw

(B9)

(BI0)

<< Tr, then using equation (B5) in equation (B8)

(Bll)
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Replacing T/r in equation (B9) by equation (Bll) results in

!

tic, o = 0.47tPV_22"31

10-8×

A low-temperature value of Cp of 6006 ft2/sec2-°R is used to arrive at

= 6.8 × 10-6 R_nVoo3 ft-lbf/ft2-sec (B12) c,o

This equation gives values lower than most stagnation-point heating equations by roughly

a factor of 2 owing to the approximations made in the stagnation-point velocity gradient

in deriving equation (B1); the fact that the density in equation (B12) is taken as the free-

stream value rather than the value at the stagnation point, and the values of Cp and Pr

used. Nevertheless, the functional form was the prime consideration in reference 12

and more recently derived equations for _lc differ little in form from equation (B12).

In the remainder of this section the following equation for _lc,o, different from equa-
tion (B12) by a constant factor, will be used

tic, o = 15.25 × 10-6 R_ n V_ 3 ft-lbf/ft2-sec

Combining the expression for V

(B13)

derived in appendix C with equation (B13) results in

3CDPsA

_tc,o= 15.25×10-6/P_ s VE3e -_ 2_msin_bEe-13h
VRn e ft-lbf/ft 2-sec (B14)

The maximum value of heating rate during entry can now be easily obtained as

which occurs at an altitude of

and a velocity of

PsCD A
_m sin q_E] ft-lbf/ft2-sec (B15)

1
h = -z In 3K (B16)

p

V = VE e-l/6 = 0.85V E

Equation (B15) applies only to the case where

(see ref. 12).

(B17)

h determined by equation (B16) is positive
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The total heat input to the stagnation point over the entire flight may be obtained by

integrating equation (B13) with the aid of the integration given in appendix D (see ref. 13)

as

= 15.25 × lO-6}rff 2 _ m \1/2

qc,o (Rn/9 sin _bE)l/2 VE [C--_) ft-lbf/ft2 (B18)
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STRAIGHT- LINE- FLIGHT TRAJECTORY EQUATIONS

Closed-form solutions of the point-mass trajectory equations do not exist. There-

fore, to obtain the required insight into the effects of ballistic coefficients, entry velocity,

and entry flight-path angle on such things as maximum entry heating and loads, some

assumptions must be made to affect an analytical solution. One possibility for ballistic

(nonlifting) vehicles is to assume the flight-path angle constant. Examination of point-

mass trajectories (see appendix E) shows that flight-path angles change very little (except

for shallow entry angles) up to peak heating and deceleration so that the aforementioned

assumption is not a great handicap. A second assumption which has even less effect on

the heating and deceleration calculations is that of neglecting gravity. Using both of

these assumptions, Allen and Eggers in reference 12 developed a rather classical analysis

for the velocity and deceleration experienced by entry vehicles. It shows in a straight-

forward manner how these quantities are influenced by the ballistic coefficient, entry

vehicle, and atmospheric properties. A part of this analysis will be repeated here with

some minor additions.

The balance of forces on the entry vehicle shown in the following sketch:

x _-- 0,0

yields the following two equations

d2h CDPV_2A
- -g + sin _ (C1)

dt 2 2m

d2x CDPV_o2A
COS (_

dt 2 2m

where x is the distance measured parallel to the surface. By considering only the

(C2)
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vertical-flight situation and by assuming that the atmospheric density can be expressed

in the form p = ps e-_h (see appendix A) over the altitude range of interest, equation (C1)

can be written as

d2h_ dV_ CDPsVo°2A e -_h (C3)
dt 2 dt - g + 2m

Since

dV_o dV_ dh dV_
-- -- --Vo 0

dt dh dt dh

equation (C3) can be rewritten to yield

DPsAV_°2 e-fihdV_o C

V_ - g+
dh 2m

A new variable Z = V_o 2 is now introduced and equation (C4) becomes

dZ CDPsA e-flhz + 2g = 0
dh m

the solution of which is

;Co sA (;
e -flh dh

Z=e m 2g m dh + cons

(C4)

(c 5)

(C6)

or

where

gives

Y is defined

Z=e
CDPsAe-flh/ _pm /_" eY:Y _ cons

CDPsA e -flh. Carrying out the previously indicated integration
tim

Z=e

CDPsAe-fih _

Y + + cons

n=l
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Z are replaced by the original variables, the following equation for V_ 2

_ (CDPsA h/n t

CDPsAe-_h co e-_

V°°2=e _"_ _ Z \_-_n=l nn'. -2gh+cons
(C7)

The equation for deceleration is obtained by the substitution of equation (C7) in

equation (C3)

dV_o CDPsA __h F (CDPsAe-flhl n stdt" CDPsA _ _ \ flmnn,. / 2ghg" _ _ e-flhe tim e - +con - 1
n= 1

(C8)

It may be of interest to note that the integration of equation (C6) could have been written

in terms of the El(x) function which is defined and tabulated in reference 53. It has

been shown that for the high speed portion of orbital entry g-terms have a negligible

effect; therefore equation (C7) can be written

CDPsA e-_h
2 _m

Voo = const e

The arbitrary constant is determined by letting Voo = V E at

ceding equation for Voo2 becomes

CDPsA (e-_h_e-_hE)
tim

Voo2 = VE 2 e

h= h E so that thepre-

With the realization that

CDPs A e-flhE

e _m = 1

the final simplified expression for the velocity and deceleration in vertical flight are seen

to be

_ CDPsAe-I 3h

Voo = VEe 2_m (C9)

220



and

respectively.

CDPsA
-- -- K

APPENDIX C

dVoo 2 CDPs A e-flh
dt _ CDPsAVE e-_he tim
g 2mg

A more compact form of equations (C9) and (C10) is obtained if

is defined; that is

K e-flh

-e

V E

(clo)

(cn)

and

\VE] = K e-flhe-Ke-/3h

d(_VEt) 2

(C 12)

By considering now the inclined flight-path case, and again by assuming that gravity

is negligible, it is seen that equation (C 1) becomes

d2___hh= _d(V_o sin _E) _ CD pVco2A

dt 2 dt 2m sin q_E (C13)

or

- dVoo CDPVoo2A

dt 2m

Equation (C 14) may be written with h as the independent variable as

(C14)

9

dVoo CDPsV_'A e__h
Voo sin q_E dh - 2m (C15)

with the use of

dV dV dV
oO cO dh OO

- - -Voo sin _bEdt dh dt dh

221



and

APPENDIX C

p = Pse-ri h

By rearranging equation (C 15) in the following form

dV°° - CDPsA e -rihdh

Voo 2m sin q_E

the integration may be readily accomplished to yield a slightly more general expression

than equation (C9). Thus

-CDPsA e_rih

Voo = VEe2rim sin 4_E (C16)

The counterpart to equation (C10) is

dVoo -CDPs A e-rih

dt _ CDPsAVE 2 e_riherim sin q_E (C17)

g 2mg

Equations similar to equations (Cll) and (C12) are obtained if K is redefined as

CDPsA
K - (C18)

rim sin bE

and the reduced time as riVEt sin _bE.

With equations (C16) and (C17), it is possible to determine the velocity or accelera-

tion in terms of altitude. To obtain the relationship between altitude and time and hence

velocity and acceleration with time, use is made of

and equation (C 16) to write

= -V sin _<bEdt oo

_ K e-rih

dh -V E sin 2d-_ = _bEe
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Rearranging the previous equation and multiplying both sides by

e-_e-__-;0_(,V__n_.)

ri results in

(C 19)

If _-Ke-rih = x and _-Ke-rihE = XE , the left-hand side of equation (C 18) becomes

X eXdx = _ eXdx _:E eXdx
XE x x x

and from reference 53 the equation

or

riVEt sin _bE = E'T(x) - E'T(XE)

is obtained. A table of E'_(x) is given in reference 53 but it is inadequate at low values

of the argument which are needed to establish the value of E'i_(Ke-rihE/. A plot of this
\_ /

function is given in figure 51.

By taking a derivative of equation (C12) with respect to h to obtain the maximum

deceleration, the condition obtained is

or from equation (C16)

at maximum deceleration.

Ke -rih= 1 (C21)

_!

V_° = Vz e 2 (C22)

The value of the maximum deceleration is

-d(V_/V_.) 1
(c23)
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and it occurs at

with K given by equation(C20).

APPENDIX C

h = 1 In K (C24)

The free-stream dynamic pressure is defined by

and maximum pressure loads occur when

constant times

dV_/dt.

q_ is a maximum. With dV_/dt equal to a

q_o, the dynamic pressure will be a maximum at the same time as
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APPENDIX D

INTEGRATION REQUIRED TO OBTAIN TOTAL HEAT INPUT

In order to obtain qc and qr from qc and qr an integration of the form

_s dt must be accomplished. Utilization of equations (3) and (4) enables thepmvoon

integral under consideration to be written as

p m V n( "ts ^. -nKe-fi h
s E _0 e-_nme 2 dt (D1)

Further convenience is offered by changing the variable of integration from t to h

through use of equation (1). By carrying out this manipulation, expression (D1) becomes

psmVE n- 1 _,0 -(n- 1)K e'flhe-flhme dh (D2)
sin _bE ,_hE

If (n- 1) Ke-fih is now set equal to a new variable

expression (D2) will result

7/, the following simpler form of

psm(VE) n-1 [(n-1)_

flsin _bEEn- 1)K_m,)(n'l_2 Ke-/ghE

_m- le- U dT? (D3)

The lower limit in expression (D3) for practical values of K and h E is effectively

zero; the upper limit however is large enough that the value of the integral between this

limit and oo is negligible. Expression (D3) may therefore be approximated by

m/V \n- I _

Vs _ E) ! _m-le-'rldT? (D4)
0

fl sin _bEl(n - 1)

with negligible error. With the identification of the integral in expression (D4) as the

gamma function, the original integral becomes completely defined in terms of prescribed

and tabulated quantities; that is

m n-
ts pmvoon dt = Ps VE 1F(m)

J0 - " (D5)

flsin _n-1)K_ m
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APPENDIX E

DERIVATION OF POINT-MASS TRAJECTORY EQUATIONS

The derivation of the point-mass equations of motion given in this section is also

found in many books and papers and is only repeated here for those who are new to the

field. Also, it enables the interested reader to assess the consequences of the assump-

tions made in developing the straight-line trajectory equations of appendix C. In this

respect, the reader is referred to the analysis of reference 54. This reference contains

an approximate method of solution for the point-mass equations and gives computed

results which, in some cases, are compared with those obtained by the equations of ref-

erence 12 (appendices B and C).

The vector acceleration in terms of the unit vectors er and _'8 is

(El)

where the positive direction of the velocities, forces, and angles are given in the following

sketch:

\

\

Flight path

With tan _b= _v, the aerodynamic force vector is

f = (-mg + L cos _b + D sin _b)e*r - (D cos q_ - L sin _b)e"8 (E2)

If _ is multiplied by

are obtained as

m and equated to _, the two component acceleration equations

d2h dv u 2 L cos _ D sin _b (E3)
dt 2 = - d-T = g r m -
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+ ? =- os 4'-_sin
(E4)

In the interest of simplicity the lift term will be dropped for now. From the definition

of CD

1
D =_ pV_2CD A (E5)

and from equations (E3) and (E4)

dv
-_-=g

u 2 1 2 CDA
r 2PV°° _sin _b

(E6)

and

1 CDA
du uv + PVoo2 cos qb

- _- - _- _

Note that = + v2.) Replacing

\
Voo2 U 9.

tions (E6) and (ET) results in

sin _b by v and
V_

dv u2 1 CDA
- d-T= g - -_-- +_ pvYoo _

cos
U

by

(ET)

in equa-

(E8)

and

CD A_ du =uv + puVco "--6-dt r
(E9)

respectively. Now equation (E8) is multiplied by v and equation (E9) by u; then the

two results are added to give

CDA
-Voo dV_o = -gVoo sin q_+ 2 pv°°3

dt
(EIO)

or

dVoo 1 CDA
dt = g sin 4, - _ PVoo2 "-h?-

(Ell)

Differentiating the equation defining tan _b, that is

tan ¢ = _v
U

(Et2)

results in

sec2_b d_b 1 dv v du
d--t-= udt +u 2dt

(El3)
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u 2 +v_____22 dv
Now sec2_b = u2 and _- and

equation (E 13) can be rewritten as

du

_- are given by equations (E8) and (E9) so that

u 2 + v 2 d_ u 2 v 2
u dt = g r r

(El4)

and finally

d_b gcos _ Voo cos _b

dt Voo r
(El5)

1 CLA
Note that the term _ pVoo 2 m

tions (Eli) and (El5) along with

giving the lift contribution has been added. Equa-

d_Er= -Voo sin _b
dt

(El6)

comprise the point-mass equations of motion.
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TABLE I.- PHYSICAL PROPERTIES AND ATMOSPHERIC DATA OF EARTH, MARS, AND VENUS

Ps,

Ibf/ft 2

Earth 2116

Mars

Venus

PS X 105,

slugs/ft 3

238

10 1.32

to to

4O 7.44

85 x 103 6685

to to

211 × 103 14 100

W s ,

o R

519

360

to

1495

[1115 17 100

to

1322

Composition
Hp,T, by volume,

ft percent

23 500 79N2,2102,1 Ar

16 470 100 CO 2

to 20 CO2, 80 N 2

46 500 68 CO2,32Ar

CO 2 > 95

Mean value

of rs,

ft

20.89 × 106

10.91

20.01

gs'

ft/sec 2

28.6

Rotational 1

period /

23h56m4.09 s

24h37m22.668s|

1 (a)

aprecise rate uncertain.

TABLE II.- COMPARISON OF ATMOSPHERIC QUANTITIES COMPUTED FROM

MARS OCCULTATION IMMERSION AND EMERSION DATA

_From ref. 6_

Parameter Immersion

Scale height near surface, km ..............

Surface number density, 1017 moles/cm3:

100% co2 ........................

80% CO2, 20% Ar ....................

Surface mass density, 10 -5 g/cm3:

100% CO 2 ........................

80% CO2, 20% Ar ....................

Surface temperature, OK:

100% CO 2 ........................

80% CO2, 20% Ar ....................

Surface pressure, mb:

100% CO 2 ........................

80% CO 2, 20% Ar ....................

9.0+1

1.9_0.I

2.1_0.I

1.43_0.I

1.55±0.1

180 _ 20

175 + 20

Emersion

12.0_1

2.25_0.15

2.45±0.15

1.65_0.15

1.85_0.15

240 + 20

235 + 20

4.9±0.8

5.2±0.8
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TABLE IV.- SUMMARY OF ATMOSPHERIC CONDITIONS NEAR

MEAN SURFACE FOR FIVE MODEL ATMOSPHERES

Minimum Minimum Most Maximum Maximum
Parameter

Ps Hp,s probable Ps Hp,s

Surface pressure, mb .......

Surface temperature, OK .....

Abundance of CO2, m-atm ....

Composition by mass, percent:

CO 2 ...............

Ar ................

Composition by volume, percent:

CO 2 ...............

Ar ................

Molecular mass, kg/(kg mole) . .

Acceleration due to gravity,

m/sec 2 .............

Equatorial radius, km .......

Universal gas constant,

J/°K-(kg mole) .........

4

280

55

100

0

100

0

44

3.72

3393

8314

4

180

55

100

0

100

0

44

3.72

3393

8314

6

230

72

88

12

87

13

43.5

3.72

3393

8314

I0

180

I00

73

27

71.1

28.9

42.8

3.72

3393

8314

10

280

100

73

27

71.1

28.9

42.8

3.72

3393

8314
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TABLE V.- CONSTITUENTS OF COMPOSITE ABLATIVE MATERIALS

Base resin

Phenolic

Epoxy

Silicone

Teflon

Polyphenylene

I

Polybenzimidazole!

Fibrous
fillers

Glas s

Asbestos

Silica

Carbon

Graphite

Pluton

Nylon

Magnesia

Zirconia

Low-density fillers

Phenolic

microballoons

Glass microspheres

Silica microspheres

Cork

Gas -filled

interstices (foam)

Subliming fillers

Nylon

Ammonium chloride

Fine-particle
fillers

Colloidal silica

Carbon black

Carbide powder

TABLE VI.- PROPERTIES OF TYPICAL ABLATORS

Ablator

Superlight:

SLA-561

SLA-220

Low-density charring:

ESA-3560

ESA-5500

Subliming:

Teflon

Porous teflon

Reinforced:

Silica phenolic

Carbon phenolic

Density,

Ibm/ft 3

14

16

31

58

131

32

109

90

Fraction
volatilized

0.44

.28

.65

.54

1.00

1.00

.17

.18

Char

density,

lbm/ft 3

8

11

11

26

91

74

Thermal

conductivity,

Btu-in./hr-ft2-°F

0.36

.55

.67

1.60

1.70

.42

3.60

7.10

Tensile

strength,

lbf/in 2

60

83

100

135

Elongation
at70 ° F,
percent

2.50

5.90

12.00

36.00

I
2000 150.00

49 11,00

4000 .41

6500 [ .29
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TABLEVII.- PLANETARYENTRYHEAT-SHIELDREQUIBEMENTS

Entry-vehicleconfiguration

Cone Base Entry Ballistic
half-angle,diameter,weight,coefficient,

deg ft Ibm slug/ft2

55 8.5 850

55 8.5 I 850 I

 o.o 1

1 C  6ooA

Material
Thickness, Weight

in. fraction

Venus direct entry

0.34

.34

.34

ESA-5500

ESA-5500M

Carbon phenolic

Venus orbit entry

Heat-shield requirements

Unit Total

weight, weight,

lbm/ft 2 Ibm

0.53 2.56 240 0.28

.24 1.16 140 .16

.55 4.35 350 .41

0.34 ESA-5500M [ 0.22 [ 1.0_I 0.156

Mars direct entry

0.35 I SLA-561 1 0.53 _I 0.04

Mars orbit entry

0.35 [ SLA-561 [ 0.43

TABLE VIII.- CALCULATED MAXIMUM DYNAMIC PRESSURES, DECELERATIONS,

STAGNATION-POINT HEATING RATES, AND HEAT INPUTS FOR MARS ENTRIES

Atmosphe re

m

_E' VE' CDA'

deg ft slug/ft 2

VM-8 20

VM-8 20

VM-8 15

VM-9 15

VM-8 15

VM-8 20

VM-9 15

16 000 0.4

16 000 .3

16 000 .3

16 000 .3

14 000 .3

12 000 .3

12 000 .3

aBased on R n = 1.0 ft.

Dynamic
pressure,

ibf/ft 2

280.0

223.0

84.3

50.3

114.0

163.0

45.9

dVoo

dt '

ft/sec 2

688

731

276

160

376

532

145

qc,o'

Btu/ft2-sec

(a)

75.6

65.5

41.0

31.1

36.5

33.7

16.8

qc'

Btu/ft 2

(a)

1601

1373

2116

2776

1304

719

1368
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/ Earth

Capsule Separation

_ ,°,e_o° _', ",_._,°_,o./'/
/ - " Y+_l_r_.-.:-_.:,

" Approach trajectory

___) _ Descent

Capsulesep_ra_o__or__j /
fly-by mode .......... _ /

_V_ars

Figure 1.- Typical Mars mission profiles.
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Analysis shows
3-in. clearance
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5. FLUTTER AND UNSTEADY-LIFT THEORY

By E. Carson Yates, Jr.

Langley Research Center

ABS TRAC T

Since this is the first of several papers in aeroelasticity and unsteady-flow phe-

nomena, a brief introduction to the aeroelastic problems of aircraft is given. Emphasis

in this lecture is on the flutter of lifting surfaces, and the most commonly used technique

for the theoretical determination of flutter stability boundaries is shown. Classical theo-

retical methods are presented for evaluating the required oscillatory aerodynamic forces

in subsonic, supersonic, and hypersonic speed ranges. Some comparisons of theoretical

and experimental results are included. Rigorous mathematical developments are not

emphasized because the objective of this lecture is to present basic ideas, concepts, and

methods and to promote an understanding and appreciation of principles and techniques.

PRE FATORY REMARKS

This paper is the first of several on topics in aeroelasticity and unsteady-flow

phenomena. First this general subject is introduced, and some of the more important

aeroelastic phenomena, including flutter, are defined so that the explicit subject matter

on flutter and unsteady aerodynamics may be presented and viewed in proper context.

A course in aeroelasticity obviously cannot be taught in three or four lectures, nor

flutter and unsteady lift theory in one. Therefore, no attempt is made to develop the

material either chronologically or completely; instead, some applications of current tech-

nology are presented with emphasis on theory rather than experiment, although some

comparisons between theoretical and experimental data are shown. Rigorous mathe-

matical developments are not emphasized because the objective is to present basic ideas,

concepts, and methods and to promote an understanding and appreciation of principles and

techniques. An extensive bibliography is provided.

An outline of the topics presented in this paper follows:

INTRODUCTION TO AEROELASTICITY

Definition oK Aeroelasticity

Three-Ring Diagram

Aeroelastic Problems in Relation to Flight Envelope
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FLUTTER THEORY
Two-Dimensional Theory
Three-Dimensional Theory

THEORETICALPREDICTIONOF OSCILLATORYAERODYNAMICLOADS
Basic Assumptions andGoverningEquations
Two-Dimensional Flow
Three-Dimensional Flow

Simple strip theory

Modified strip analysis

Subsonic kernel function

Supersonic influence- coefficient method

Piston theory

COMPARISONS OF ANALYTICAL AND EXPERIMENTAL RESULTS

CONCLUDING REMARKS

INTRODUCTION TO AEROELASTICITY

Definition of Aeroelasticity

Aeroelasticity is the study of aeronautical problems which involve interactions of

aerodynamics (steady or unsteady) and structures (flexibility and sometimes mass

properties).

Aeroelastic problems are indicated in reference 1 to be aggravated by:

(a) Low stiffness due to:

(1) Thin lifting surfaces

(2) Slender fuselages

(3) High- strength materials

(4) Efficient structures

(5) High temperatures

(b) A wide range of operating conditions that include:

(1) Dynamic pressure

(2) Mach number

(3) Altitude

(4) Weight

(5) Configuration
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Three-Ring Diagram

The three-ring diagram (fig. 1) represents diagrammatically aerodynamic forces,

mass forces, and elastic forces. (See also fig. 1-1 of ref. 2.) These types of forces in

themselves constitute separate problem areas, for example, steady-state aerodynamics,

classical mechanics, and elasticity, respectively. Other problem areas involve inter-

actions of two or more of these types of forces: for example, dynamic stability of "rigid"

aircraft involves a consideration of aerodynamic forces and mass forces. Mechanical

vibrations involve inertia forces and elastic forces; whereas static aeroelastic problems

such as steady-state loads on elastic aircraft, control effectiveness, and divergence

involve elastic and aerodynamic forces. The center area of the three-ring diagram indi-

cates a region in which all three types of forces are important. This region, referred to

as "dynamic aeroelasticity," encompasses such problems as flutter, buffet, and dynamic

response to disturbances such as atmospheric turbulence.

Implications for flutter investigation.- Because of the complex interactions of three

different kinds of time-dependent forces, theoretical work may become rather involved.

In addition, models for experimental work must have correct mass and stiffness distri-

butions as well as correct shape and must be tested under conditions dynamically similar

to full-scale conditions.

Static aeroelasticity (not time dependent).- Static aeroelasticity involves steady-state

aerodynamics. Mass forces (for example, weight) may or may not be significant. Static

aeroelasticity includes effects of structural flexibility on the following:

(1) The aerodynamic load distribution which includes:

(a) Loads imposed on structure that dictate structural design.

(b) Aerodynamic coefficients that determine:

Performance (especially at off-design conditions)

Static stability (affected by lift-curve slope, aerodynamic center, center

of pressure}. An example of aeroelastic influence on stability occurs

when lifting air loads cause the tips of a swept wing to bend upward.

The wing surface continues to deform until the elastic restoring forces

of the structure balance the external aerodynamic forces plus the inter-

nal mass forces. This deformation tends to unload the tips, reduce lift,

shift the center of pressure fomvard and can significantly affect the

(2)Control effectiveness and reversal

(3) Divergence - an instability (corresponding to flutter at zero frequency) involving

a monotonically increasing deflection of the structure caused by aerodynamic
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load building up more rapidly than the elastic restoring forces. Static

aeroelasticity is covered more fully in paper no. 6 by John E. Lamar.

Dynamic aeroelasticity (time dependent).- Dynamic aeroelasticity involves unsteady

aerodynamics and includes flutter, buffet, and dynamic response.

Flutter:

Flutter is a self-excited oscillation in which the motion gives rise to aerodynamic

forces which sustain the oscillation - a structural instability that is frequently destruc-

tive. The motion is both cause and effect. In the motion, energy is extracted from the

airstream. Flutter is the oscillatory counterpart of divergence.

Flutter may involve a single lifting surface, a single control surface, or the entire

aircraft.

Types of flutter include:

(1) Bending-torsion flutter of beam-like lifting surfaces

(2) Flutter of plate-like lifting surfaces

(3) Control-surface flutter

(a) Single degree of freedom (control rotation only)

(b) Coupled with parent- surface motion

(4) Panel flutter (may cause sudden destruction of panel or eventual fatigue failure)

(5) Propeller-whirl flutter

(6) Stall flutter

This lecture is concerned only with flutter types (1) and (2).

Flutter investigation either of components or of a complete aircraft involves theo-

retical and/or experimental determination of:

(1) The neutral stability boundary (flight conditions for incipient flutter)

(2) The flutter mode and frequency

(3) The subcritical (below-flutter-speed) response to:

(a) Oscillatory or impulsive excitation

(b) Random excitation

Flutter alleviation must be considered if flutter margins (separation between flutter

boundary and operating envelope) are inadequate. The following are some of the methods

that may be employed to increase margins, but each involves a potential penalty on the

overall efficiency of the aircraft:
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Method Penalty

Increase structural stiffness by:
Beefing up structure ...........
Increasing airfoil thickness .......
Increasing box-beamsize ........

Reduceflight dynamic pressure ......

Change shape, e.g., plan form .......

Change mass distribution .........

Increased weight

Increased wave drag

More local stiffening required,

less room for high-lift devices

Reduced mission economy

Reduced performance

Loss of structural efficiency,

aggravated balance problems

Buffet:

Buffet is response (in terms of pressure fluctuations, accelerations, stresses, etc.)

to the fluctuating (periodic or random) aerodynamic forces caused by separation of flow

from the aircraft surface. Structural flexibility may or may not be significant. Buffet

may be caused by:

(a) Flow separation due to adverse pressure gradients

(b) Wake from a more forward portion of the vehicle

(c) Shock-boundary-layer interaction

Buffet is most likely to occur at high angles of attack, for example, at high altitude

or high load factor. Buffet may be alleviated by minimizing regions of flow separation

(a requirement for drag reduction anyway). Buffet is not readily amenable to analytical

study.

Dynamic response:

Included in dynamic responses are responses to both random and transient

excitations.

In aircraft response to gusts and turbulence, structural flexibility may or may not

be significant. Response affects structural loads, ride qualities. Distinction is made

between gust response (caused by disturbances in the atmosphere), buffet (caused by dis-

turbances generated by the aircraft itself), and flutter (an aeroelastic instability). More-

over, flutter instabilities must be well removed from the flight envelope, and buffet may

be minimized by cleaning up flow separation, but the aircraft must be designed to with-

stand gust loads.

Two types of gust loads are studied:

(1) Discrete gusts for which transient responses are examined by a time-history

method and maximum-response conditions are identified.
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(2) Continuous turbulence is considered as a random process and is treated by

statistical methods. Determine the root-mean-square response and the number of loading

cycles. These procedures require knowledge of the statistical properties of the atmos-

pheric turbulence, for example, gust intensity as a function of gust wave length or fre-

quency, as well as the frequency-response characteristics (transfer function) of the air-

craft, for example, variation with gust frequency of the response to a sinusoidal input

gust. Gust loads are covered more fully in paper no. 7 by Kermit G. Pratt.

Other types of dynamic response not explicitly treated in this lecture include:

(1) Control deflection - transient response

(2) Engine failure or inlet unstart - transient response

(3) Forces transmitted to the airframe through the landing gear. Such forces

include those caused by landing impact (transient) and runway or taxiway

roughness (random). (Aerodynamic forces may be significant.)

Effects of flexibility on dynamic stability:

Structural flexibility can affect frequency and damping characteristics (lateral,

longitudinal). Aerodynamics may usually be treated as steady or quasi-steady.

Aeroelastic Problems in Relation to Flight Envelope

A few of the more important aeroelastic problem areas are illustrated in figure 2.

(See also ref. 1.) The curve, which is a function of altitude and Mach number, illustrates

the design dive flight condition for a high-performance airplane such as a supersonic

transport. The flight region is above this dive boundary. Flutter of lifting surfaces

(and divergence for surfaces with low sweep angle), panel flutter, gust response, and

buffet are most likely to be critical near transonic speeds. Aeroelastic effects on stabi-

lity and control may be greatest at the high supersonic Mach numbers or wherever dyna-

mic pressure is greatest, although problems may also be encountered elsewhere. For a

satisfactory aircraft design, these instabilities, excessive loads, and other undesirable

conditions must fall a sufficient distance below or above the flight region. The area of

ground loads is shown at the low end of the Mach number scale.

Importance of aeroelastic problems: Aeroelastic phenomena frequently produce

critical design loads for high performance aircraft.

Typical flutter boundaries are shown in more detail in figure 3. Increasing the

leading-edge sweep ALE of the wing is shown to improve the flutter margin, that is,

to move the flutter boundary away from the flight envelope. Figure 3 shows that flutter

may also be a problem in the higher supersonic range where the flutter boundary may

again approach the flight envelope.
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In review, several types of aeroelastic problems, both static and dynamicjhave been

enumerated, and comments have been made upon the interactions of aerodynamic, inertia,

and elastic forces that are involved in these phenomena. Several types of flutter have

been indicated, and attention is now directed to the flutter of lifting surfaces, for which

the equations of motion are developed in the next section.

FLUTTER THEORY

In flutter theory, attention is directed toward establishing the neutral stability

boundary between converging and diverging oscillations, that is, conditions are sought

under which oscillation of the lifting surface continues at constant amplitude (harmonic

motion). Note that the counterpart in static aeroelasticity is divergence (flutter at zero

frequency).

Two-Dimensional Theory

Equations of motion.- Consider a two-dimensional wing (fig. 4) to be supported at a

point called the elastic axis (e.a.) by a translation spring with spring constant k h

(deflected by displacement h) and by a torsion spring with the constant kc_ (deflected

by displacement a). The origin of the streamwise coordinate x is at the midchord

point 0, and the airfoil center of gravity (c.g.) is a distance xczb behind the elastic

axis which in turn is the distance ab behind the midchord. Positive directions are

indicated in the figure. A complete list of letter symbols used in this lecture is given as

appendix A.

Summing forces in the h-direction leads to

mh + S_6_ + ghkh ]_] h + khh = -L(h,h,a, ft,6_) (1)

Summing moments in the a-direction leads to

&
IaS+ Sah + gaka i-_ a + kaa = Mot(h,'.6,a,5,&) (2)

where

m mass of wing per unit span

S a static unbalance of wing, first moment of wing section mass about the neutral

or elastic axis (positive for center of gravity aft of elastic axis), mbx a
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ot

a

gh

k h

g_

k_

L

M_

b

x_

r_

_h

torsional displacement of wing about elastic axis (positive leading edge up)

nondimensional distance from midcord to elastic axis (positive rearward},

fraction of semichord b

structural damping coefficient for plunging motion

2
spring constant for plunging motion, mw h

mass moment of inertia of unit span of wing about elastic axis, mb2r_ 2

structural damping coefficient for pitching motion

spring constant for pitching motion, I_w_ 2

oscillatory lift per unit span (positive upward}

oscillatory moment per unit span about elastic axis (positive leading edge up)

wing semichord

nondimensional distance from elastic axis to section center of gravity

(positive rearward), fraction of semichord b

nondimensional radius of gyration of wing section about elastic axis

circular natural frequency of wing in plunging motion (uncoupled)

circular natural frequency of wing in pitching motion (uncoupled}

A dot over a symbol indicates differentiation with respect to time.

h
The terms ghkh ,..,_Th and g_ka _ a in equations (1} and (2), respectively,

represent structural damping forces which are proportional to displacement but in phase

with velocity. This type of relationship is a more representative (though empirical}

description of energy dissipation in solid structure than is the more familiar viscous

damping (forces proportional to velocity). If viscous damping forces are present, hoW-

ever, they may be represented by adding the terms Chh and Cc_ to the left sides of

equations (1) and (2), respectively, where
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viscous damping coefficient for plunging motion

viscous damping coefficient for pitching motion

The following assumptions are made:

(1) Perturbations from free-stream conditions are small.

thin airfoil and small camber and angle of attack.

(2) No camber deformation occurs.

(3) Motion is harmonic and of small amplitude.

Thus, both structure and flow may be represented by linearized theory.

For harmonic motion

h = hoeiWt t
= _0 eiwt

where

h0, s0

£o

complex amplitudes

circular frequency of oscillation

t

Also,

time

= iGoot

= __2a

Then the lift force L and the pitching moment M_

oscillation may be exp_ressed in the forms

This assumption implies

for harmonic (constant-amplitude)

(3)

(4)

(5)

(6)

(7)

L = L(h,a)

(8)
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and

where

Mol = Me(h,e)

p fluid density

l h lift factor associated with plunging motion

l e lift factor associated with pitching about quarter chord (a = -1/2)

m h pitching-moment factor (about quarter chord) associated with plunging motion

m e pitching-moment factor (about quarter chord) associated with pitching about

quarter chord

The derivation of equations (8) and (9) is given in the appendix of reference 3. Explicit

expressions for L and M e are subsequently presented herein (section entitled

"Theoretical Prediction of Oscillatory Aerodynamic Loads").

Equations (8) and (9) may also be written

L = 2_qk2b(/h ' hg

M e = 2_qk2b 2 (m h'
h

where flow may be subsonic or supersonic, and

q dynamic pressure, p V 2

V speed

k

lh' = l h

le'
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+ le'e) (11)

boo
reduced frequency,

V

lift factor associated with plunging motion

lift factor associated with pitching about elastic axis



pitching-moment factor (about elastic axis) associated with plunging motion

pitching-moment factor (about elastic axis) associated with pitching about

elastic axis

Note that lh, la, mh, m a

k and Mach number M.

leads to

are complex quantities which are functions of reduced frequency

Substituting equations (10) and (11) into equations (1) and (2)

and

m

where g is mass-density ratio, -_.

Flutter determinant.- Nontrivial solution of equations (12) and (13) exists if and

only if the determinant of coefficients vanishes. Thus, the flutter determinant is

= 0 (14)

In the solution of equation (14) for the neutral-stability (incipient-flutter) condition,

bw is treated
Mach number M is usually held constant, and reduced frequency k = -_-
as an input parameter (independent variable) because the aerodynamic parameters

/hL/a',mh',m a' are usually rather involved functions of k and M. Since the flut-

ter determinant contains complex quantities, direct _u,uuu_,........ u,_ ..... *: ^- _' A,, ...,,1 ,_

general yield complex values of w. This complication is avoided by introducing the

variable

=X+iY=_(l+ ig)
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/¢oas the dependent variable (eigenvalue) in place of _a so that w can be treated as

real and g represents additional (fictitious) structural damping required to produce

constant-amplitude oscillation. Then, the equation

I1 ¢°h2 1 _21_t -_-_2(+igh) -1 h' _xa-1 a'

_xot+mh' _rot211- (l+iga>_21+ma'

= 0 (14a)

can be solved for $2 and hence

-m

V 1

bwa k_-X

Y
g---_

X

(15)

and the neutral stability point corresponds to g = 0.

Solution procedure.- The procedure for solution is as follows:

of k.

(1) Find the quantities in equation (15) by solving equation (14a) for several values

(2) Plot g as a function of V/bwoL and g as a function of ¢o/wol (fig. 5).

(3) Read flutter conditions at g = 0.

Three-Dimensional Theory

Formulation of flutter equations.- The flutter equations for three-dimensional

lifting surfaces are conveniently obtained from Lagrange's equations of motion.

Lagrange' s equations may be written in the form

0

d _(_i)__i+0__U_U +0._DD=Qi (i=l(1)n)
dt _ti _1 i

where

T

U
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D dissipation function (damping)

Qi generalized force for ith degree of freedom (aerodynamic)

qi ith generalized coordinate

number of modes

Assume that the oscillatory (small) deflection Z(x,y,t) of the wing (with coordi-

nate system as shown in fig. 6) can be represented by a linear combination of n chosen

mode shapes Zi(x,y ). Thus,

where

n n

Z(x,y,t) = _ Zi(x,Y)Z0,ieiWt = _ Zi(x,y)qi(t } (17)
i=l i=l

X

Y

streamwise coordinate

spanwise coordinate

undeflected wing lies in x,y plane

Z(x,y,t) deflection shape of oscillating wing (displacement normal to x,y plane}

Zi(x,Y) normalized deflection shape of ith mode (may be coupled or uncoupled vibra-

tion mode}

Z0, i complex amplitude for ith mode

The normalization of the mode shapes Zi(x,y) is accomplished by dividing the

modal deflection at each point Ix, y) by the deflection at some reference point on the wing.

The kinetic energy of the vibrating wing may be written

or, with equation (17),

T = _- dx dy (18)
S

n n

W=g
i=1 s

(19)

301



where m(x,y) is mass of wing per unit area. Theintegration indicated in equations (18)
and (19)extendsover the entire lifting surface S. If the Zi are taken to be the normal
modesof vibration of the wing in a vacuum,the modes are orthogonal and so

_mZiZ j dx dy = MiSij
S

(20

where

Mi generalized mass for ith mode

5ij Kronecker delta

and

n

1 _ Mi_li 2 (21T=_
i=l

If convergence of the series representation in equation (17) is to be assured, the modal

functions Zi(x,y) should be elements of a complete set. The normal modes constitute

such a set.

Potential energy U can be found from T by considering the undamped free oscil

lation of the wing in a vacuum. For this type of motion equation (16) reduces to

d o(_i/ oUd--t + _i = 0 (i = l(1)n)
(21

and, with equation (21),

0U _ Mini i = ¢oi2Miqi (2
aq i

where w i is the frequency of ith normal mode. Then,

n

U = g ¢oi2Miqi 2 (2

is a manifestation of Rayleigh substitution (frequency squared times generalized mass

equals generalized stiffness). (See, for example, equation (7.29) of reference 3.) Alter-

natively, the potential energy (strain energy) can be formulated directly in terms of stiff-

ness as is illustrated in appendix B.
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The dissipation function for structural dampingis

D

1 n wi2
_ Migi-_-qi 2

i=1

(25)

where gi is the structural damping coefficient for the ith mode.

Substituting equations (21), (24), and (25) into equation (16) and assuming harmonic

motion leads to

[_(1 + igil- 11 w2Miq i =Qi (i = 1(1)n)

7

2 J

(26)

Generalized forces Qi are obtained from the expression for virtual work 5W:

n

5W(t) = ff 5Z(x,y,t) hp(x,y,t) dx dy = _ Qi(t)Sqi

S i=l

(27)

where Ap(x,y,t) is the lifting pressure at point x,y on the lifting surface S at

time t.

The integration again extends over the entire lifting surface

tion (17),

n

5Z(x,y,t) = _ Zi(x,y)Sqi(t)
i=l

S. Now from equa-

(28)

Substitute equation (28) into equation (27) and note that the qi are independent variables.

Then,

S

Assuming motion of very small amplitude permits

of the contributions from each mode:

where Apj (x,y,w,M)

ap(x,y,t)Zi(x,y)dx dy (29)

Ap to be expressed as the sum

n

qj
Ap = _ Apj(x,y,w,M)b-_ (30)

j=l

is the lifting pressure at point (x,y) on the wing caused by motion

of the wing in the jth mode, and b 0 is the nondimensionalizing reference length intro-

duced so that Apj will have same units as Ap. The reference length b 0 is often taken

to be wing-root semichord, or sometimes the semispan. Then,
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Nondimensionalizeby letting

where 1 is the semispan. Then,

whe r e

n

j=l b0 'S
ApjZ i dx dy

x = b0Xl_

Y /Yl J

n

Qi - lpv2 _ AiJqj
2

j=l

Aij = ff Apj Zi dXl Aij (k,M) /i = l(1)n /S _ dYl = 1(1)n/

(31)

(32)

(33)

(34)

The generalized aerodynamic force Aij is a function of wing plan-form shape, mode

shapes, frequency, and Mach number. The dynamic pressure q is pV2
2

Then, the equations of motion (26) can be written

where

n

Z
j=l

_ij +
¢°'2 r] k02Mj

-]--k-(l+ igj)_
Wr 2 P/b02

2

5 i )qj = 0 _= 1(1)n) (35)

w r reference frequency (arbitrary constant)

bow
k 0 reduced frequency (input parameter), V

0

_r dependent variable (eigenvalue), WRY(1 + ig) = X + iY
w2

As in equation (14a), the fictitious factor (1 + ig) is again introduced in order to avoid

the complication of dealing with complex frequencies; and again the neutral-stability

(flutter) condition is associated with g = 0. Also
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V 1

bOOer

w 1

Y
g------

X

(36)

Compare with equations (15).

Solution of the flutter equations.- Equations (35) are homogeneous in the n gen-

eralized coordinates, so that these equations have a nontrivial solution if and only if the

determinant of coefficients vanishes. Thus,

Ajj + - _ _ plb02

2

= 0 (i,j = 1(1)n) (37)

This equation is the flutter determinant for three-dimensional lifting surfaces corres-

ponding to equation (14a) for two-dimensional wings.

Note that equation (14a) contains off-diagonal mass terms /lx_ which represent

the static unbalance of the two-dimensional wing about the elastic axis. Equation (37)

would contain corresponding terms only if the vibration modes chosen to describe the

motion of the three-dimensional wing (eq. (17)) were nonorthogonal. (See eq. (20).)

Also note that in comparison with equation (14a), equation (37) has been multiplied

through by k02 so that the generalized aerodynamic forces Aij will remain finite at

low k 0.

Note finally that aerodynamics enters into the flutter equations (35) and the flutter

determinant (37) only through the generalized aerodynamic forces Aij is given in

equation (34) and appears in the form of lifting-pressure distributions Apj(xl'Yl'k0'M)
q

For a particular wing, set of mode shapes, and Mach number, solution of equa-

t-ion (37) is similar to that described for equation (14), except that figure 5 will now con-

rain n curves instead of 2, and these n curves may indicate moi:e tha_ v,,= _,,_,

point.

If desired, the mode of motion at flutter may be found by substituting the values of

k 0 and _-r (at flutter) back into equation (35) to obtain the qj (complex eigenvector)

and finally by using equation (17) to find Z(x,y,t) (also complex).
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In summary the equations of flutter motion have been formulated for both two-

dimensional and three-dimensional wings, the latter on the basis of energy considerations

employing Lagrange's equations. A procedure for solving these equations to find the

flutter-stability boundary has been described. As yet, no method has been given for eval-

uating the aerodynamic forces involved in the flutter motion. Several theoretical methods

for doing so are now presented.

THEORETICAL PREDICTION OF OSCILLATORY

AERODYNAMIC LOADS

Aerodynamic loads associated with a harmonic (constant-amplitude) oscillation are

required in analyses of flutter and of subcritical frequency-response characteristics as

used in gust studies. Oscillatory aerodynamic theories apply equally to both types of

problems since the two problems differ aerodynamically only with regard to the pre-

scribed downwash distribution over the wing. For flutter, the free stream is considered

steady, and the downwash at any point on the wing is only that associated with the harmonic

motion of the wing itself at that point. For gust studies, the wing may also be allowed to

deflect harmonically, but an additional oscillatory downwash must be included to represent

waves (sinusoidal gusts) in the free stream.

Basic Assumptions and Governing Equations

Assumptions.- The usual assumptions made in the development of aerodynamic

loads and the results of making them are:

(1) Conservation laws lead to the equations of motion.

(2) Inviscid, irrotational fluid flow leads to concepts of potential flow:

a. Velocity potential

b. Acceleration or pressure potential

(3) Small perturbations permit linearization of the flow equations and use of

superposition procedures.

(4) Boundary conditions specify no flow through the wing surface and no flow separa-

tion. If the trailing edge is subsonic, these boundary conditions lead to the Kutta condition.

Governing equations.- These assumptions lead to the linearized wave equation

c2V2_b = _2_ (38)
ot 2

governing propagation of small disturbances from a disturbance source at the origin of

coordinates x,y,z through a fluid initially at rest. In equation (38), c is the speed of

sound in the undisturbed fluid and _b is the potential function.
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More detailed derivation of equation (38) and discussion of the application of the wave

equation to lifting surface theories are given in appendix C. To apply (38) to a disturbance

source moving in the -x direction with speed V, transform to moving coordinates.

Let

X' =x+V

y' =y

Z'=Z

t'=t

(39)

Then equation (38) becomes

_x,2 ay,2 _z,2 = c--2 + V -_r _b
(40)

where _b may be the velocity potential so that the velocity vector _ = Vq_. Equation (40)

also governs acceleration potential _ which is related to _b by

_x P 2p
(41)

(See appendix A of ref. 4.) Equation (40) applies to subsonic or supersonic speeds.

Boundary conditions are:

(1) No flow-through wing surface, no flow separation.

(2) Perturbations vanish at infinity.

(See also Assumptions preceding equation (38).)

Two- Dimensional Flow

Assumptions include those preceding equations (3) and (38) and following equa-

tion (41). Assume also incompressible flow as in reference 5 and in the appendix of ref-

erence 3. "........ for -..v._,_ ...... ,:,¢_¢rlhl_ flnw and ref. 7 for supersonic flow,)U _A_VAAAI., '_,VLAALa_ _ .....l'_l,

Equation (40)then reduces to Laplace's equation

+ =0 (42)
_x 2 _z 2
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Solveby superposifion of elementary solutions, for example, source of strength AH for

which the velocity potential is

_s - AH2_l°ge _x2 + z2 - AH4_1Oge (x2 + z2) (43)

and vortex of strength AF for which the velocity potential is

AF tan-1 z (44)
_v- 2_ x

Noncirculatory loading terms.- Even in the absence of a free-stream velocity, an

oscillating wing experiences aerodynamic forces associated with the up-and-down pumping

action of the wing. These forces are related to the familiar virtual-mass effect experl-

enced, for example, by an accelerating cylinder. Consider plunging motion represented

by a distribution of sources to simulate the advancing side of the wing and a distribution

of sinks to simulate the receding side. Seek first the velocity potential associated with

single elements of each distribution as illustrated on the left side of figure 7.

The velocity potential for the single source and sink elements is conveniently

obtained by mapping the airfoil into a circle by means of the Joukowski transformation,

The Joukowski transformation

2W = _ + 1 (45)

transforms the airfoil in the W-plane into a unit circle in the _-plane (fig. 7). Flow

does not penetrate the wing surface, so the wing surface in the W-plane, and hence the

circle in the _-plane, are streamlines of the flow. A source and a sink of equal strength

located on the circle as shown preserve the circle as a streamline of the flow. Hence,

transforming back to the W-plane preserves the airfoil as a streamline. Source

strength is proportional to l_. From equation (43), the velocity potential for a source of

strength 2 AH at (41,_} 1) and a sink of equal strength at (41,-_} 1) is (in _-plane):

(4-41)2+ (7?-_/1) 2

(4-41) 2 + (v+ 2

Source (and sink) strength 2 AH, rather than just AH, is used because only half of the

source flow is evident outside the airfoil (or circle in _-plane), the other half being "lost"

inside the contour.
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Transforming to the W-plane, letting AH = i]dx, and integrating (summing sources) over

the chord leads to

_b(h) = h_ - x2 (46)

which is the velocity potential for the airfoil in plunging motion.

(pitching) motion

--w {[- x2 ]
?

Similarly for angular

(47)

Note that _ (h) and 4>(_) do not depend on the existence of a free stream V. The

pressures associated with equations (46) and (47) are called "noncirculatory" and are

found from Bernoulli's equation:

i _-_I (48)
_p = 2p _ + V = Lifting pressure

at ax

Substituting equations (46) and (47) into equation (48) and integrating from leading edge to

trailing edge gives the total noncirculatory contribution to lift:

LN = yp(t{ + V_ - a_) (49)

Circulatory loading terms.- Pressures associated with "bound" vorticityin the wing

and "free" vorticityin the wake are called "circulatory." Ifthe Kutta condition at

trailingedge is to be satisfied,changes in angle of attack must be accomplished by vor-

tices shed intothe wake. Kelvin's circulationtheorem requires thatthese vortices be

accompanied by equal and opposite bound vortices "shed" inside the wing. The circlein

the _-plane and hence the airfoil in W-plane are preserved as streamlines if these bound

vortices are located at points that are the reflections (reciprocals) of the free-vortex

points (fig. 8). The velocity potential for a vortex of strength -AF at (}o,0) and its

image of equal and opposite strength at (1/_ o,0) is (in _-plane)

._ / \

_1' [tan- I U tan- I ,_ _° _)= -

Now as the wing oscillates in a free stream of speed V, vorticity of harmonically varying

strength continuously sheds into the wake. So transform to W-plane and let
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ikV(t-t0 )
AF = U0eiW(t-t0 ) dx o = U0e dx o = U 1 dx o (51)

to represent vorticity of a strength that varies harmonically with time (or with distance

downstream since the free vortices are assumed to move downstream with free-stream

velocity). This vortex picture and the associated aerodynamic forces to be calculated for

it are related to the single shed vortex and associated load build-up (Wagner function)

resulting from a step change in angle of attack or from an impulsive start. The Wagner

function will be discussed more explicitly in paper no. 7 by Kermit G. Pratt.

Observing that t-_ for steady-state oscillation, and integrating equation (50) from

x o = 1 to x o = _ defines qS(F), the velocity potential due to vorticity. The strength

U 0 of the vorticity (and hence of _(F)) is found from the Kutta condition which may be

stated as

0Ea"_ 6(r) + _(_) + _(a) + _(_ = Finite value

x=l

The Kutta condition in effect relates vortex strength (and hence lift) to the downwash at

the three-quarter chord. 1 But it is not necessary to find U 0 explicitly. Substituting

equations (46), (47), (50), and (51) into equation (52) leads to

(52)

--

which is equal to the downwash at
1

X =D

2
(the three-quarter chord).

(53)

1The relation between lift and downwash at the three-quarter chord is easily illustrated for a thi_

two-dimensional wing in steady incompressible flow. For such a wing, the lift L may be expressed._,/\in

terms of abound vortex of strength F located at the quarter chord. Thus, L= pVF= 2_c_(_V2)(2b)
\-- /-

or F = 2_bV. Now a vortex of strength F induces a velocity (e.g., downwash) of magnitude w = 2_-'_
so that

F = 27rrw = 2_rV_

where r is the distance from the vortex. These two expressions for F, can be equated to determine a
distance r, which is the distance from the bound vortex (quarter chord) to the point at which the vortex-
induced downwash is the same as the physical downwash w = V_ on the wing. Thus, r = b which iB a
distance of one-half chord from the vortex, or the three-quarter-chord point. Conversely, then, if th_
downwash at three-quarter chord is known, the lift may be found from

v
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Substituting equations (50) (transformed to W-plane) and (51) into equation (48) and inte-

grating from x = -1 (leading edge) to x = 1 (trailing edge) gives the total circulatory

contribution to the lift L C and with equation (53)

_1 _ XoL C = pV U 1 dx o = 2ypVQ

S: x° U1 dx o
_o 2 - 1

_ X_o+l
_1 _0= 1 U1 dxO

= 2ypVQC (54)

where

C = C(k) =F+iG=

or in terms of Bessel functions,

_o x o e_ikxo dxo

(55)

"J1 ÷ iY1
C(k) = (56)

"(J1 + YO) + i(Y1- JO)

(See fig. 9.) The complex factor C, called the "Theodorsen circulation function"

(ref. 5), modifies both the magnitude and the phase angle of both L and M s.

Combined loading.- Combining equations (54) and (49) gives total lift on a harmoni-

cally oscillating two-dimensional wing in incompressible flow, and with corresponding

expressions for pitching moment about the elastic axis, the following expressions are

obtained (in dimensional form with chord = 2b):

1L = _pb2(il + V_ - ba_) + 2ypVbC + Va + bt_ - (57)

and

..... 3F ^;: . (1 °k,,', , /'1 , ,,2'_h,_

,._,",- _ )..-j
I

I L _ /_J
(58)
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The original development of these expressions in reference 5 provides for the inclusion of

a trailing-edge control surface also. Two-dimensional subsonic compressible flow is

discussed in references 6 and 8, and supersonic flow is examined in references 7 and 8.

Three-Dimensional Flow

Simple strip theory (subsonic or supersonic}.- The strip-theory concept originated

as a means of applying two-dimensional aerodynamic theory to wings of finite span. In

this regard it has largely been superseded by development of the more rigorous lifting-

surface theories for three-dimensional wings. Nevertheless, approximate methods such

as strip theory remain useful for heuristic purposes and for practical applications where

their simplicity, flexibility, and economy are advantageous.

Applications to unswept wings:

In applications to unswept wings:

(1) The motion of each strip (fig. 10) is taken to be that associated with the three-

dimensional wing.

(2) Uncoupled vibration modes are frequently used (that is, bending along and torsion

about an elastic axis).

(3) Camber modes may be incorporated if necessary.

(4) Natural (coupled) modes may be used if they are decomposed into bending, tor-

sional, and possibly camber components.

Aerodynamic forces on each strip are taken to be those associated with a two-

dimensional wing undergoing the same motion as the particular section of the three-

dimensional wing. This approach implies that aerodynamic interactions between strips

are ignored. This simplification, of course, is not a very good representation of the three-

dimensional loading near the tip, but it may be acceptable if the aspect ratio is not too

small.

The motion and forces for each strip are then given by equations (1), (2), (10), and

(11), except that now wing properties, deflections, and loads are functions of y. For

example,

m

h = h(y) = _ hifh, i(Y)e i¢°t (59)
i=l

and

n

= _(y) = _ _jf_,j(y}e i°°t (60)

j=l
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where hi and _j are complex amplitude functions (which define the eigenvectors in

the flutter problem), and fh, i and f(_,j are uncoupled vibration mode shapes. (Com-

pare with equation (17).)

Then for application of Lagrange's equations (16), the kinetic energy becomes

T =-°j2eiwtll _ hi2 _ mfh'i2 dy + _ _ hi_-J _:i=li=lj=l

j=l

Sjh, if , j dy

(61)

Note that the cross-product (off-diagonal) generalized masses are not all zero.

Compare with equations (18) to (21).

The potential energy is

1 eiCOt[_ ¢Oh,i2hi

U=2 ki=l

]

l 2 n 2 2 l Vl

2_omfh, i dy+ _ w_,j__j _;I_f(_,j2d.j (62)j=l

where

Wh, i frequency of ith uncoupled bending mode

w_,j frequency of jth uncoupled torsion mode

See appendix B for alternative derivation of potential energy (strain energy) directly in

terms of stiffness.

Damping and aerodynamic loads (both nonconservative forces) may be incorporated

into the generalized forces:

Qh, i
(63)

Qc_,j = S_ (Ma- iI_w_,j2g_,jf_,j__ j)f_,j dy (64)

where L and M s are given by equations (8) and (9) or (10) and (11) with h and c_

represented by equations (59) and (60).

Solution for the flutter condition proceeds as before, except the flutter determinant

is now of order m + n, and figure 5 contains m + n curves.
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Application to swept wings:

For swept wings strip-theory concepts may be applied to streamwise strips (identi-

fied herein as type A) or strips perpendicular to the swept elastic axis (identified as

type B) as illustrated in figure 11. (See ref. 9.)

The advantage of the type A concept is that root and tip geometry are accurately

represented. The disadvantage is that inclusion of camber mode is probably required.

The converse applies to the type B concept.

In applying the type B concept, the aerodynamic loads are considered to be defined

by the component of free-stream velocity V n perpendicular to the elastic axis (fig. 1 l).

The component parallel to the elastic axis is considered to contribute only to the downwash

on the strip, which for calculation purposes is evaluated at the three-quarter-chord point

of the strip as indicated previously.

Modified strip analysis.- The modified strip analysis (refs. 10 to 14) is similar to

the type B concept previously given with aerodynamic expressions of the type given for

two-dimensional incompressible flow in equations (57) and (58), but with the following

modifications:

(1) Arbitrary section lift-curve slope Cl_,n = c/_,n(y) used instead of 2n.

(2) Arbitrary section aerodynamic center ac, n = ac, n(y ) used instead of the
quarter chord.

(3) The circulation function C = C (k) in equations (57) and (58) is modified on the

basis of two-dimensional compressible-flow theory to account approximately for effects

of compressibility on the magnitudes and phase angles of the section lift and moment vec-

tors. (See refs. 10 and 13.)

The resulting expressions for section lift L and pitching moment about the elastic

axis Ms are (see eqs. (4) to (6) ofref. 13):

L =Trpb2_ + Vn& + Vn(_ tanAea- ba(5_ + Vn_: tanAea)l + C/ot, nPVnbCQ

Mo/ =-_rpb411 + a2)(5_ + Vn+tanAea )

+ 7rpb3a(i_ + Vnd tanAea)+ uob2Vn2(_ - abT tan Aea )
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where the downwash Q is givenby

b_.C/ot,n
Q = ia + Vn_ + Vna tanAea + \--_--- + ac, n

and

- a)(_+VnTtanAea)

V n = V cosAea component of freestream velocity normal to elastic axis

Aea sweepback angle of elastic axis

(7 local bending slope of elastic axis

T local rate of change of twist along elastic axis

The spanwise distributions of the steady-flow aerodynamic parameters c7 (y)

and ac,n(y) to be used in these equations are those distributions that are perti_n_h_ to the

particular planform and Mach number being studied. Such distributions may be obtained

from any suitable steady-flow theory or from pressure-distribution measurements in flight

or in a wind tunnel. Thus, the important effects of three-dimensional compressible flow

are represented in the modified strip analysis even though the mathematical structure of

the method stems from the theory of two-dimensional incompressible nonsteady flow as

given in reference 5.

Synthesis of the modified-strip-analysis method may be illustrated in terms of the

section lift force on an unswept wing:

(1) For three-dimensional, compressible, steady flow,

L ot PV2(2b) = c1 pVbQ= c/_n _,n

In steady flow the downwash Q is given by Q = Vc_.

(2) For two-dimensional, incompressible, oscillatory flow (method of ref. 5),

L = _pVbQC + Noncirculatory terms

where C = C(k) = F I + iG I. Subscript I indicates incompressible flow, and downwash

Q is ........... the .... " ........ *'^ /_ .... /_q__I,_UIdI_I,I,_LI WII, II U_Ik.,m.m.maL.u.mm. _ _..m.Z',k.SL,*V_. Ik_"_" "_'_L" *k_ I" !

(3) For three-dimensional, compressible, oscillatory flow (modified strip analysis,

ref. 13),

L = c/_,pVbQC + Noncircuiatory terms
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where

and subscript C indicates compressible flow.

Featuresof the modified strip analysis are:

(1) The method uses distributions of aerodynamic parameters from linear or non-

linear theories or from measured loads for the undeformed wing in steady flow (subsonic

to hypersonic}.

(2) Circulation functions for two-dimensional incompressible flow are modified in

magnitude only to account for compressibility.

(3) Automatic selection of reduced frequency by a computing program is practical

because the computing time required for each k value is extremely small in comparison

with requirements of the more elaborate aerodynamic theories.

Limitations of the modified strip analysis are:

(1} Application of this or any strip theory to wings of low aspect ratio is questionable.

(2} For compressible flow, the modified strip analysis is of questionable validity at

high reduced frequencies because of feature (2).

(3) The method is not applicable when the component of free-stream Mach number

normal to the leading edge is near 1.0 (" sonic leading edge"}.

Subsonic kernel function.- The subsonic kernel function method (refs. 4, 15 and 16,

and appendix C herein) is based on the linearized potential-flow theory for lifting surfaces.

(See eq. (40).) The acceleration potential (eq. (41)) is used to avoid having to extend sur-

face integration over the wake. Acceleration-potential (or pressure) discontinuities exist

only across the lifting surface, whereas velocity-potential discontinuities exist across the

lifting surface and the wake vortex sheet.

Downwash-pressure integral equation and kernel function:

An elementary solution of equation (40} is

i¢°_t+ M (x-_) - Rc-_l
_ H e _ c_2 (65)

_s - 4_R'

where

H source strength
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c speedof soundin undisturbed flow

M Mach number of undisturbed flow

R' = _(x - _)2 + _2(y _ _)2 +/32z2

Equation (65) represents the acceleration potential at point (x,y,z) due to a harmonically

pulsating pressure source at point (_j/,0). (See coordinates in fig. 6.) The corre-

sponding solution for a doublet with axis in the z-direction is

_d = _z _s (66)

Note that these solutions are singular at the location of the source or doublet.

The distribution of (unknown) lifting pressure on a wing may be represented by a

distribution of pressure (acceleration-potential) doublets over the plan form. Then, solu-

tion for the pressure (doublet-strength) distribution may be obtained by requiring that the

downwash induced on the wing by the doublets be the same as that associated with the pre-

scribed deformation or motion of the wing.

Now, the downwash on the lifting surface S (fig. 6) is

n

w(x,y,O,t)= a--_-I = (-_ + V aa--_Z(x,y,t)= _ + V aa--__i Zi(x,y)qi(t)
_Z Z=0 ' "=

from equation (17).

blets requires that

(67)

To find _b (and hence w) due to the superposition of pressure dou-

gh be found in terms of _. From equation (41),

V -_ + i¢o_b = _ (68)

This first-order ordinary differential equation has the solution

since both _ and

sides of (68) and (69).

- *_u_ 1E_,_

1 V f?_(x,y,z) = V e _,(X,y,z)e V dX (69)

vanish at x = _oo. Note that e iwt may be removed from both

With equations (65) to (67), equation (69) gives the downwash at
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(x,y,z) dueto a unit-strength pressure doublet (unit p/p, seeeq. (41))at

-iw(x-{) x-_ r2) -1/2 iw (k-M_)
O___- H a2 e V __ (X2+ eV_ 2
az 4_V az 2

(_ ,77,0):

d_ (70)

where r =_y-_?)2+z 2.

By superposition the downwash at

form is, for unit amplitude of the ith vibration mode,

aZi 1 _ APi(_,_?)
wi(x,y,O) =V-_-+ iwZ i = _ JJ pV

S

where the kernel function is

(x,y,0) due to all the doublets over the plan

K(x-_,y-_?,k,M) d_ d_ (71)

-iw(x-_) i¢o (h_M_X2 + r 2 )

02 V Cx-_ 1/2
K=lim--e 3_ (k2+ r2) - eVf_2 clk (72)

z-O Oz2 ¢o

Compare equation (72) with equation (70). The symbol APi(_,_ ?) is the lifting pressure

at point (_,71) on the wing due to deflection (or motion) of wing in the ith vibration mode.

Divide all lengths by the reference length b 0 to nondimensionalize. Then equa-

tion (71) may be written

wi °Zi 1 _ APi
=_+ikZ i=_,).) _K d_ d_ (73)

S

and equation (72) may be expressed as

K= lim e -ik(x-_) a2 S: (1 2) -1/2 e-iklu-- + u du (74)
z--0 oz 2 1

where

r

k 1 =k_

MR' - (x-_)
Ul = _r

Equation (71) or (73) establishes the relation between downwash distribution over a wing

and the pressure distribution over the wing. The integral on the right side of either equa-

tion (71) or (73) may be evaluated to determine the downwash distribution (and hence the
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shape of mean camber surface) required to produce a prescribed steady or oscillatory

pressure distribution, or the relation may be solved as an integral equation to determine

the pressure distribution generated by a prescribed steady or oscillatory downwash distri-

bution. The latter is the usual situation in oscillatory-flow problems such as flutter and

gust response, and hence equation (71) or (73) is usually referred to as the "downwash-

pressure integral equation."

Since the potential for the doublet building block is singular at the doublet location,

the kernel function has singularities at x = _, y = 77 of the form

fl (0) ; ik. _ k 2 I-._ (e) ,-]
e2 "T_' -_-L,2 + loge -_j

where

_2
fl(O) = 1 - sin O

f2(0 ) = log e k(1 - sin 8)
2(1 - M)

(75)

and

%

x- _ =_ sine L

;_(y - 'q) = E cose
(76)

and therefore

E = V(x- _)2+ p2(y_v)2= R'
z--0

(Note that only the first of the three singularities listed remains in steady flow (k = 0).)

For integration over S, equation (73) is divided into parts in order to treat the singular-

ities accurately in the integration.

Solution of downwash-pressure integral equation (73) - pressure-mode functions:

For solution of equation (73), assume that the lifting pressure at any point on the

wing by " ^_ "_ ....can be represented a linear ..... -"..... ,,, _,,,.o_.. °_,,'_o........mn_

q _ anmi I-_ - _72 fn(_)gm(T})--b(_) (77)
m=O n=O
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where

b(u) local semichord at spanwisestation 77

b0 = b(0) root semichord

fn(_ )

gm(U)

Also,

where

nth chordwise pressure mode

ruth spanwise pressure mode

(78)

_m = _m (U) chordwise location of mean-chord line at spanwise station

1 semispan

i
anm arbitrary constant (may be complex) coefficients to be determined by solution

of equation (73).

Primes denote dimensional coordinates.

The factors I_ and _ - T/2 are included to satisfy the boundary conditions
V_T_

on lifting pressure at leading edge (_ = -l), trailing edge (_ = +l), and tips (7? = +l), regard-

less of the values of the anm i. Thus, solving equation (73) for an unknown pressure
i

distribution means solving for the values (complex for k > 0) of the associated anm

coefficients. (See eq. (77).)

Equations (78) map the plan form into a square (-l < _ < l, -l -<U -<_l).

For convergence of the series representation in equation (77), both fn(_) and gin(T/)

must be elements of a complete set of functions.

The fn(_) are preferably polynomials orthogonal with respect to _1 - _ over the

chord. Thus,
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_n(_) =
sin E(n + ½) cos-1 _

sin (_ cos-l_)

Old method (for example, ref. 15):

e
fo(_) = cot

This is Birnbaum-Glauert series.

fn(_) = 4._ sin nO
22n

The gm(_) are preferably polyomials orthogonal with respect to

span.

(n _---I)

__ _72

Thus, gm(7?) = Um(_?) are Chebyshev polynomials of the second kind.

Old method (for example, ref. 15):

(79)

(80)

over the

gm(q) = _/m (81)

Solution of downwash-pressure integral equation (73) - collocation procedure:

With equation (77), equation (73) can be written

M N

wi(x'Y)v aZi_x _1 _ _ • •- + ikZ i = anmlFnml(X,y) (82)

m=0 n=O

where

Fnm(x,y)= 11Y-1 dv (83)

In this process of going from equation (73) to equation (82), by means of the pressure

approximation of equation (77), an infinite number of unknowns (that is, the lifting pres-

sure at every point on the wing surface) has been in effect replaced by a finite number of

unknowns (that is, the (M + .1)(N + 1) coefficients anmi). All quantities in equation (83)

are known, so that the Fnml(X,y) may be evaluated and substituted into equation (82)

which may then be inverted to find the anm 1 if the downwash is specified at a number of

points at least equal to the number of unknown anm 1 values. This manipulation is the

collocation procedure in which it is required that the downwash induced by the pressure

distribution over the wing coincide with the prescribed downwash at a finite number of

discrete points on the wing called "collocation points" or "control points."
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Evaluation of Fnml(X,y) from equation(83) - methodof integration:

For evaluation of Fnml(X,y) from equation (83), chordwise and spanwiseintegra-
t-ionsare each brokenup into four parts (fig. 12)becauseof singularities and discontin-
uities in the kernel. (Seealso refs. 15and 17.) Gaussianintegrations are used in each
region.

Elements of kernel-function analysis include:

(1) Suitable expression for kernel function and its evaluation

(2) Choice of pressure-mode functions

(3) Choice of location for control points

(4) Methods of integration

(5) Number of pressure modes

(6) Number of control points

(7) Number of integration stations

The advantages of the analysis are:

convergence

(1) The method applies to lifting surfaces of arbitrary plan form, although difficul-

ties may be encountered if the aspect ratio is high.

(2) The method applies for arbitrary vibration modes (coupled or uncoupled) that are

continuous through the first derivative. In particular, camber deformations require no

special attention.

A limitation of this approach is that it does not give consistently reliable results for

Mach numbers near 1.0, nor for low mass ratios (ref. 14).

Alternate method of solving the downwash-pressure integral equation:

An alternate method for solving the downwash-pressure integral equation utilizes

superposition of discrete singularities rather than continuous distribution (ref. 18).

The procedure is as follows:

(1) Divide the wing into a number of area elements or '%oxes."

(2) Consider a line of acceleration-potential doublets to be located at the quarter

chord of each box.

(3) Solve for doublet strengths (and hence pressure) by collocating downwash at the

three-quarter chord of each box.

Discrete-element methods in application to steady-state aerodynamics are discussed more

fully in the next paper by John E. Lamar (paper no. 6).

Supersonic influence-coefficient method.- The supersonic aerodynamic-influence-

coefficient method (refs. 19 to 22) is based on linearized potential-flow theory for lifting

surfaces. (See eq. (40).) Velocity potential is used rather than acceleration potential
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becauseflow aft of trailing-edge Mach cone does not affect flow over wing, and hence

integrations over the entire wake downstream to infinity need not be performed.

Equation (40) can be written in hyperbolic form for M > 1.

_2_XX - @yy - _bZZ = _(i2¢oVqbx - w2_ )

where harmonic motion has been assumed, and _ = M_ - 1.

_b(x, y, z, w, M) = Perturbation velocity potential

Letting

x=X, y=/_Y, z=_Z,

transforms equation (84) to an equivalent problem at

t=T

(84)

(85)

Thus equation (84) becomes

The lifting pressure from equation (41) is

1 2 2 A_bx_i2w

where Aqb is potential difference between upper and lower wing surface.

solution of equation (86) is a pulsating source at (_j/,_) for which the velocity potential

is

L:_-iwV" )I o)R
_bs(X'Y'Z)= - yRI{exp IB-_c2 Ix- } cos

where

R=_(x- _)2+ (y_7)2+ (z- _)2

and the source strength is H = H(_,_/,_)

The condition of flow tangency at the wing surface requires that

(86)

(87)

An elementary

(88)

H(_,V,0) = w(_,V,0) (89)

323



anddownwash w is prescribed. Then by superposition, the total perturbation velocity

potential at a point (x,y) on the wing is

- 1 _A_ H(_'_/)R- 1 exp _-'iwM2 (x t wMR (905v cos 
Note that the downwash (and hence _) may differ for upper and lower surfaces of wing.

Thus, nonzero wing thickness may be incorporated. The area of integration A is the

surface of the wing intercepted by the Mach forecone from the point (x,y). Note that

equation (905 is an integral, not an integral equation as in the subsonic kernel-function

method.

The method of evaluating equation (905 is as follows:

(1) Cover the wing with a grid of boxes, preferably rectangles with diagonals paral-

lel to the Mach lines (called "Mach boxes"). (See fig. 13.)

(2) Assume that the source strength over each box is constant and equal to the value

at the box center. Then, for a planar wing (z _ _ _ 05, equation (905 is replaced by

b
_b(xi'Y]) = _ _ H(_m'_n)_ijmn(Xi-_m' YJ-7/n 'k'M)

A
(915

where

b

@ijmn

and

where

streamwise length of boxes

velocity-potential influence coefficient (VPIC} and is the potential induced at

(xi, Yj) by unit-strengthsourceboxwithcenter (_m,_n)

:: I_bijmn: _-_ R1-1 exp i V _-_ (x i - _m cos _-_R 1 d_ d_

2

and integration extends only over the box with center at

324



Problems encounteredwith the Mach box method are:

(1) Convergence of solution with increasing number of boxes.

(2) Treatment of "jagged" leading and trailing edges as represented by the Mach

boxes.

(3) Treatment of highly swept wings at low supersonic Mach numbers.

A method analogous to the Mach box method has been formulated for the transonic

range (specifically M = 1.0) (refs. 23 to 27). This method, employing square boxes, is

also based on potential-flow theory which can be linearized even in the transonic range if

the frequency of oscillation is high enough. (There is no counterpart in steady-flow:) It

appears, however, that a less restricted approach (for example, ref. 28) must be

developed before consistent accuracy can be expected in this speed range.

Piston theory.- Piston theory (refs. 29 and 30) is not a potential-flow method.

As Mach number increases toward the hypersonic range, the Mach forecone narrows,

and lateral influences on the pressure at a point on the wing diminish. Further, shock

waves and Mach waves approach parallel to the wing surface. Since the predominant

changes through shock waves occur along a perpendicular to the wave front with little

change parallel to the wave, upstream influences diminish.

Thus, pressure at a point (x,y) becomes predominantly dependant on flow condi-

tions in the immediate vicinity of Ix, y); that is, p(x,y) becomes approximately a point

function and hence can be described by a one-dimensional theory. Thus, p(x,y) can be

considered as the result of a piston moving perpendicular to the wing surface with velocity

w(x,y,t), the prescribed downwash at wing point (x,y).

The piston Cone-dimensional) equation for isentropic flow is

where 7 is the ratio of specific heats.

By binomial expansion

'wX + 4" + I) @--_)
P - 1 + 7{----I _(7 w 2

P_

27

+

(93)

(v) (v)°= I+TM w + (7+ I) M2 + (7+ I) M3 +. • • (94)

Note that upper and lower surfaces may be treated separately, so that wing thickness can

be accounted for and in general must be accounted for to obtain accuracy at the higher

supersonic Mach numbers.
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Limitations on the applicability of piston theory are:

(1) MS< 1.0, and either M2>> 1.0, kM2>> 1.0, or k2M2>> 1.0, where 5 is
inclination of airfoil surface relative to free-stream direction.

(2) The theory does not accountfor anyaffect of plan form (e.g., wing tips) on the
pressure distribution.

In review, the assumptionsleading to the potential-flow equationandits lineariza-
tion in both subsonicand supersonic flow havebeen stated. The equationitself, with
pertinent boundaryconditions has beenpresented, and solutions of the equationto find
pressures onan oscillating wing havebeenindicated through a building-block approach
employingelementary solutions andsuperposition. Expressions pertinent to two-
dimensional incompressible flow, strip-theory adaptationsfor three-dimensional wings,
andthree-dimensional lifting-surface theory for subsonicand supersonic flow havebeen
presented. In addition, a nonpotential-flow methodbasedon piston-pressure conceptshas
beengiven for the higher supersonic range. The next section showsapplications of these
theories to some flutter problems, including comparisons with experimental data, and
illustrates someof the features of wing flutter boundaries.

COMPARISONSOF ANALYTICAL AND EXPERIMENTAL RESULTS

Somecomparisons of theoretical and experimental flutter dataare presented in
figures 14 to 24. Figure 14 includes also an indication of the range of applicability of the
theoretical methodspreviously discussed for a typical sweptwing.

Figure 15 showscalculated spanwisedistributions of steady-flow section lift-curve
slope and section aerodynamic center for four rectangular wings as required for use in
the modified strip analysis. (Seeref. 14.) Figure 16 showsthe flutter-speed index

V for oneof thesewings over a wide range of mass ratio, extending from the air-
bw_
craft rangedownalmost to the range pertinent to hydrofoils. The variation with mass
ratio shownis typical for most wings. Figure 17showsthe corresponding flutter
frequencies.

Figures 18 (from ref. 13)and 19 (from ref. 11) illustrate the effect of Mach number
on the flutter speedof a sweptwing of aspect ratio A = 4.0, taper ratio _ = 0.6, and

quarter-chord sweep angle Ac/4 = 45 °. The variations with Mach number shown are

quite typical for most wings of reasonably conventional plan form. The spanwise distri-

butions of c l and ac, n used in the modified strip analysis were obtained from
ot,n

steady-state lifting-surface theory, from lifting-line theory, and from wind-tunnel mea-

surements of pressure distributions. The agreement between calculations and
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experiments for data obtained in the air and in Freon-12 shows that the wide differences

in flutter-speed index V obtained in these two media are attributable to wide

b0w_

differences in mass ratio (/_ as low as l0 in Freon-12 and as high as 260 in air). Note

that flutter speeds in figure 19 are nondimensionalized with a calculated reference flutter

speed V R instead of with the more usual quantity b0wc_ _.

Figures 20 and 21 (from ref. 13) show further comparisons between modified strip

analysis, kernel functions, and experiment. In addition, the abrupt increase in both flut-

ter speed and frequency, which occurred experimentally at Mach number near I. 07,

indicates a sudden change in flutter mode. The possibility of such a sudden change is also

predicted by the modified strip analysis which, at somewhat higher Mach number, yields

two flutter solutions at very nearly the same speed but different frequencies.

Figure 22 shows flutter speeds in the supersonic range as calculated by the Mach

box method and by quasi-steady second-order theory which is essentially the same as

piston theory at high Mach numbers.

Figure 23 (from ref. 13) presents flutter speeds into the hypersonic range as

obtained from the modified strip analysis employing steady-flow aerodynamic parameters

obtained from shock- expansion theory and by quasi- steady second- order theory, which is

again representative of piston theory at these high Mach numbers.

Figure 24 shows a typical flutter boundary as a function of the two independent

variables, Mach number M and mass ratio _. (See ref. 12.) As illustrated, the varia-

tion of flutter boundary with p typically becomes steeper as Mach number increases in

the supersonic range. Also, the track traced across this surface by flutter data obtained

in a particular wind tunnel (yielding point F t for example) may not coincide with the

track corresponding to standard atmosphere (including point F a for example). Hence,

careful interpretation of the tunnel data may be required.

CONCLUDING REMARKS

Some topics in aeroelasticity have been reviewed with emphasis on flutter and

unsteady-lift theory. Simplified methods have been included for heuristic purposes, and

the elements of some routinely used aerodynamic theories for subsonic to hypersonic

speeds have also been covered.

A wide range of problems are currently under investigation but are not yet ir_ a

satisfactory state. These include:

(1) Convergence of kernel-function and finite-summation (influence coefficient)

procedures
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(2)Lifting surfaces at high reduced frequencies (needed for both flutter and gust-

analysis frequency-response functions)

(3) Transonic aerodynamics, especially accounting for variations in local Mach num-

ber over the lifting surface

(4) Lifting surfaces with controls, especially partial-span controls

(5) Interference problems

(a) Coplanar surfaces (wing-tail or wing-canard)

(b) Nonplanar surfaces (T-tails, V-tails, etc.)

(c) Wing-fuselage and wing-nacelle interactions

(d) Wind-tunnel wall effects, including resonance conditions

(6) Nonlinear aerodynamics

(a) Second-order potential flow

(b) Lifting surfaces with free-vortex flow, e.g., leading-edge separation

vortices and fuselage-separation vortices
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A

Aij

Amn

a

ac, n

anm*

b

b(r/)

bo

C = C(k)

C h

C_

APPENDIX A

SYMBOLS

portion of wing plan form intercepted by Much forecone from point (x,y);

also, wing aspect ratio

generalized aerodynamic force (see eq. (34))

area of box with center at (_m,T/n) (see eq. (92))

nondimensional distance from midchord to elastic axis (positive rearward),

fraction of semichord b

nondimensional distance from midchord to local areodynamic center (for

steady flow) measured perpendicular to elastic axis, positive rearward,

fraction of semichord b

coefficient of pressure-mode function fn(_)gm(_}) in the pressure expansion

associated with motion of the lifting surface in the ith vibration mode

(see eq. (77))

semichord of two-dimensional wing; also, streamwise length of boxes super-

imposed on wing planform (see eq. (91))

local streamwise semichord of three-dimensional wing at spanwise station 77

(see eq. (77))

wing-rootsemichord, b(0) (see eq. (77))

circulation function (eq. (55)), F + iG

viscous damping coefficient for plunging motion

viscous damping coefficient for pitching motion

speed of sound in undisturbed fluid

local lift-curve slope for a section perpendicular to elastic axis in steady flow
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D

F

Fnm i

fl(O),f2(O)

fh,i(Y)

fn( )

f_,j(Y)

G

%

gh, i

gm(_)

g_

g_,j

H

AH

h

h o
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dissipation function (damping)

real part of complex circulation function C (see eq. (55))

function defined in equation (83)

functions defined in equations (7 5)

mode shape of ith uncoupled bending mode (see eq. (59))

nth chordwise pressure-mode _,_l,_Lion (see eq. (77))

mode shape of jth uncoupled torsion mode (see eq. (60))

imaginary part of complex circulation function C (see eq. (55))

structural damping coefficient

structural damping coefficient for plunging motion (see eq. (1))

structural damping coefficient associated with motion in ith uncoupled bending

mode (see eq. (63))

mth spanwise pressure-mode function (see eq. (77))

structural damping coefficient for pitching motion (see eq. (2))

structural damping coefficient associated with motion in jth uncoupled torsion

mode (see eq. (64))

source strength (see eq. (65), (88))

strength of source element (see eq. (43))

translational displacement of wing at elastic axis (positive downward)

complex amplitude of plunging (translation) motion (see eq. (3))

complex amplitude of ith uncoupled bending mode (see eq. (59))



Io/

i

J0,J1

K

k

k 0

r
k 1 =k_

k h

kot

L

LC

L N

l

l h - lh,

l
ot

lot'

M

Mi

mass moment of inertia of unit span of wing about elastic axis, mb2rot 2

¢z

Bessel functions of first kind (see eq. (5655

kernel function of the downwash-pressure integral equation (see eqs. (715

to (7455

reduced frequency, _-

bow
reduced frequency based on root semichord, -V-

spring constant for plunging motion, mwh 2

spring constant for pitching motion, Iotwot 2

oscillatory lift per unit span (positive upward)

circulatory contribution to lift (see eq. (54))

noncirculatory contribution to lift (see eq. (495)

wing semispan

lift factor associated with plunging motion (see eqs. (8) and (10)}

lift factor associated with pitching about quarter chord (a = -1/2) (see eq. (855

lift factor associated with pitching motion (see eq. (10)5

free-stream Mach number

generalized mass for ith vibration mode (see eqs. (20) and (21)5
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Mot

m,m(y)

m(x,y)

m h

mht

mot

mot t

P

Ap

hpj

Q

Qh, i

Qi

Qot,]

q

oscillatory moment per unit span about elastic axis (positive leading edge up)

mass of wing per unit span (see eqs. (1), (61), (62))

mass of wing per unit area (see eqs. (19), (20))

pitching-moment factor (about quarter chord) associated with plunging

motion (see eq. (9))

pitching-moment factor (about elastic axis) associated with plunging motion

(see eq. (11))

pitching-moment factor (about quarter chord) associated with pitching about

quarter chord (see eq. (9))

pitching-moment factor (about elastic axis) associated with pitching about

elastic axis (see eq. (11))

number of vibration modes (see eq. (16))

local pressure (see eq. (41))

local lifting pressure on wing (see eqs. (27), (29), (30))

local lifting pressure on wing associated with motion of wing in jth vibration

mode (see eqs. (30), (34))

effective downwash for oscillating wing (see eqs. (53), (54))

generalized force for ith bending mode (see eq. (63))

generalized force for ith degree of freedom (see eq. (16))

generalized force for jth torsion mode (see eq. (64))

free-stream dynamic pressure, pV2
2
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qi ith generalized coordinate

5qi virtual displacement in ith generalized coordinate

R=_(x- _)2+ (y_7)2+ (z- _)2

R' = _(x - _)2 + f2(y _7)2 + f2z2

 m) ÷lyj,n)

z 2

So/

T

nondimensional radius of gyration of wing section about elastic axis

lifting- surface plan form

static unbalance of wing (first moment of wing section mass about the neutral

or elastic axis) positive for center of gravity aft of elastic axis, mbx_

kinetic energy (see eqs. (16), (18))

t,t' time

t o

U

Uo,U 1

U m

u I -

reference (initial) time (see eq. (51))

potential energy (strain energy of the elastic system)

strength of vorticity (see eqs. (51), (53))

Chebyshev polynomial of second kind

_r_lno4 hr v_ofn_,
....... j ......
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V free- stream speed

V n

V R

component of free-stream velocity normal to elastic axis, V cos Aea

calculated reference flutter speed obtained from modified-strip-analysis

method by using aerodynamic parameters for two-dimensional incompress-

ible flow

W=x+iz

5W

W

complex plane containing airfoil (see eq. (45) and fig 7)

virtual work (see eq. (27))

local downwash at lifting surface (see eq. (67))

w i local downwash at lifting surface associated with motion in the ith vibration

mode (see eq. (71), (73), (82))

X real part of eigenvalue

x, y, z

x',y',z'

rectangular Cartesian coordinates (see fig. 6)

transformed coordinates (see eq. (39)}

X o

xl,Y 1

X_

particular value of x

nondimensional coordinates (see eqs. (32))

nondimensional distance from elastic axis to section center of gravity (posi-

tive rearward), fraction of semichord b

Y

Y0' Y1

Z(x,y,t)

Zi(x,Y)

imaginary part of eigenvalue

Bessel functions of second kind (see eq. (56))

deflection shape of oscillating wing (displacement normal to x,y plane}

normalized deflection shape of ith mode (may be coupled or uncoupled vibra-

tion mode)
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_0

complex amplitude for ith mode

virtual displacement in deflection shape of oscillating wing (see eqs. (27), (28))

torsional displacement of wing about elastic axis (positive leading edge up)

complex amplitude of pitching motion (see eq. (3))

complex amplitude of jth uncoupled torsion mode (see eq. (60))

AF strength of vortex element (see eq. (44))

7 ratio of specific heat at constant pressure to specific heat at constant volume

(see eqs. (93), (94))

inclination of airfoil surface relative to free-stream direction

5ij Kronecker delta

e=R' Iz=0=_(x-_)2+_2(y-_)2

=_ +i_? complex plane containing circle into which airfoil is mapped (see eq. (45) and

fig.7)

angle variable defined in equations (76)

A sweepback angle

taper ratio

mass ratio

,_?,_ rectangular Cartesian coordinates (see fig. 6)

o particular value of
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m(_?) chordwise location of mean-chord line at spanwisestation 7/

p fluid density

O"

T

local bending slope of elastic axis, dh

dot

local rate of change of twist along elastic axis, _-

velocity potential

local potential difference between upper and lower wing surface (see eq. (87))

velocity-potential influence coefficient (VPIC), that is, the potential induced at

(xi, Yj) by unit-strengthsourceboxwithcenterat (_m,T/n)

acceleration potential (see eq. (41))

_2 = X+ iY= (_-_)2(1 +ig) (see eq.(14)

C_) 2= (1 + ig) (see eq. (35))

Wh

(Dr

50O/

woe,j

circular frequency of oscillation

circular natural frequency of wing in plunging motion (uncoupled)

frequency of ith uncoupled bending mode

frequency of ith natural mode

reference frequency (arbitrary constant)

circular natural frequency of wing in pitching motion (uncoupled)

frequency of jth uncoupled torsion mode
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Subscripts:

C

c/4

compressible flow

quarter chord

doublet

ea elastic axis

incompressible flow

i,j ith or jth mode of vibration (e.g., eqs. (59), (60)) or generalized coordinate

(e.g., eqs. (16), (19)) or box center (e.g., eqs. (91), (92))

source

V vortex

oO infinity or free- stream conditions

Dot over a quantity indicates differentiation with respect to time.
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APPENDIX B

POTENTIAL ENERGY OF A BEAM IN BENDING AND IN TORSION

(ALTERNATIVE TO EQUATIONS (24) AND (62))

The potential energy consists of the strain energy stored in the wing beam, that is,

the work done in deforming the wing. Consider bending first:

Z

x/

Both stresses ay and elongations Ey have this profile since by Hooke's law for the

assumed pure bending (pure compression and pure tension stresses only),

C;y = Ecy (BI)

where E is Young's modulus.

Then the work done at a section y = Constant and over a unit area of the beam

is _ay dey analogous to work done on a linear spring. Nowparallel to directionsx,z

2
= aYS_,_ S:_ _"_- :_ (_

Then over the cross section of the beam the work done is, since ay is independent of x,

w/2

±
J-u/2 _-w/2 2E 2E

where

U width of beam in x-direction

W depth of beam in z-direction
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Now,

 y-rx- x (B4)

The work done over the cross section is, therefore,

Cu I: lw/2 2--E E2z2 (BS)

but 1_ uw3 = Ix = Moment of inertia of the cross sectional area about the x-axis through

the neutral point.

So the work done over the cross section is

1 Eix _.02h_ 2

Then the potential energy over the entire beam is

1 /_02h_2 lh2 1 __d2fh_2

Ubending = f_EI x \0-_/ dy= __ f0 EI \d--_/ dye i°_t (B6)

Similarly for torsion, the work at a given cross section and for unit area of cross section

J'ss d7 but by Hooke's law,is

S s

7 = -_ (B7)

where 7 is the shearing strain, s s the shear stress, and G the shear modulus.

Then,

2

C
f S S S S_ s s d7 = ds s - (B8)J -G- 2G

and

where

angle.

s s = Gr d__8._ (B9)
ay

r is the radial distance from neutral axis, and 0 is the torsional displacement

So over the entire cross section, the work done in deflecting the beam is
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Ss 2 G2r2 fd612 dA G [de_ 2 GIp [d_12 (too)

where

GIp becomes GJ ("torsional rigidity").

Then over the whole length of the wing the potential energy is

Utorsio n : _ GJ k_-_] dy : __ GJ k-_] dy

Ip is the polar moment of inertia of the section for a circular shaft, or, in general,

(m:)

For bending and torsional motion of a beam, the potential energy (strain energy)

given by the sum of equations (B6) and (Bll) corresponds to the potential energy in equa-

tions (24) and (62), where h and e are the same as the generalized coordinates qi.
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APPENDIX C

AERODYNAMIC INFLUENCE COEFFICIENTS AND THE KERNEL

FUNC TION ME THOD FOR DE TERMINING LOADS

ON AN OSCILLATING, FLEXIBLE WING

Aerodynamic influence coefficients.- Before the lifting-surface methods of flutter

calculation are discussed, a review of the concept of aerodynamic influence coefficients

will be instructive. Consider the surface of an oscillating or nonoscillating wing to be

subdivided into a number of small segments or "boxes,

the downwash w at any point (x,y)

of the incremental downwashes AW

" as illustrated in figure 25. Then,

on the wing surface can be considered to be the sum

at (x,y) induced by the loads on each of the boxes:

w(x,y) = _ Awi(x,y )

i

where Awi(x,y ) is the downwash at (x,y) caused by the load on box

may also be written as

(C1)

i. This relation

V-"

w(x,y) = L LiKi(x'Y) (C2)
i

where Ki(x,y ) is the downwash at (x,y) caused by a unit load on box i and is called

the aerodynamic influence coefficient. L i is the load on box i. Or again

w(x,y) = _ APiKi(x,y) AA i (C3)
i

where APi is the pressure on box i, and AA i is the area of box i. The aerodynamic

influence coefficient Ki(x,y ) will obviously depend on the stream Mach number M and

on the frequency of oscillation w, as well as on the longitudinal distance x - _ and

lateral distance y-_/ between (x,y) and box i (fig. 25).

The downwash-kernel-function integra! equation.- The summation equation (C3), if

taken to the limit as AA i -- 0, becomes an integral equation

w(x,y) (_("A_,t_,,%W[WIy _ _% ¢O(v _ n_.M] cF tin (C4)
v'-- "v ..... j •

S

where Ap(_j/) is the magnitude of the lifting pressure at point (_,_/) and

K_(x- _),_(y- ._),M ! is the kernel function which represents the downwash induced at
Lv V J
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at point Ix,y) by a unit lift at point (_,_/) oscillating with frequency w in a flow of

Mach number M and speed V. The area of integratior. S is, for subsonic speeds, the

entire wing area and, for supersonic speeds, the wing area lying within the forward Mach

cone from ix, y).

By virtue of the boundary condition that no fluid flows through the wing surface and

that no flow separation occurs, the summation (or integral) at a point on the wing of the

downwash due to all lift elements on the wing surface must equal the downwash due

to the geometrical motion of the wing. In an analysis employing chosen modes, the geo-

metrical motion is specified by the mode shapes so that for a given frequency w (or

reduced frequency k), the w(x,y) is known. Thus, if expressions can be obtained for the

kernel KF_(x- _),v(y- 7?),Mq, the only remaining unknown in equation (C4)is the load
l.w -3

intensity Ap(_,_/) which we are seeking.

If attention is confined to small perturbations in an inviscid fluid, the governing

equation for the propagation of disturbances will be the wave equation.

Derivation of wave equation.- Euler's equation of motion may be written as

D_ -1
Vp+ F

Dt P

or

0_._5+ 5. V_ = -._[1Vp + F (C 5)
at P

where D denotes the substantial derivative, _ is the fluid velocity vector, p is the
Dt

local fluid density, p is the local fluid pressure, t is time, and F is the body force

vector (force per unit mass). If the body forces arise from a conservative force field

(for example, gravity) then F may be expressed as the gradient of a scalar potential U

n

F = -vu (C6)

Further, if a unique relation exists between p and p (for example, as in adiabatic flow),

then p = p(p), and a function P may be defined so that

dP - dp _ dp dp (C7)
P dp P

342



then

aP_ oP op_ 1 ap
ax op ox pax

or

1 Vp
VP = (C8)

Substituting equations (C6) and (C8) into equation (C5) and using the vector identity

- 5x(v xS)

yields

+ V - g x (v x u-) = -vp - vu

(C9)

or

V(P+ U+_) =_X (VX_) - O--q_Ot (CI0)

which is Bernoulli's equation for the flow of an inviscid fluid. Now, make the following

assumptions:

(1) No force field exists.

(2) The fluid is initially at rest.

(3) All disturbances are of infinitesimal amplitude.

(4) Thermodynamic equilibrium exists.

By virtue of assumption (I), VU = 0. By virtue of assumption (2), and Kelvin's cir-

culation theorem, the propagation of disturbances is irrotational so that V x _ = 0. By

virtue of assumption (3), second and higher powers of the fluid velocity may be neglected,

so that V_ = 0. Assumption (4) is already contained in Bernoulli's equation in the form

of the unique relation p = p(p). With these assumptions Bernoulli's equation reduces to

VP + a__ = 0 (Cll)

Since the flow is irrotational, a velocity potential _b may be introduced such that

= (c12)
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Thus,

or

or

a V_=O
vP+-_

p + a__ = C onst. = Poo
at

Since disturbances of small amplitude are assumed, the function p = p(p) may be

expressed as p = P(Poo + Z_o) where P_o is the density of the undisturbed fluid.

Expanding this relation in a Taylor series gives

Poo

so that, for small disturbances,

Then, equation (C7) may be integrated to give

P- P = dP= dp = dpdo = dp = loge
Poo P Poo dp p_o Poo Poo Poo

and since

= c2
P

oO

where c = Speed of sound in the undisturbed fluid, the result is

p- P = c 2 log e p-_

Taking the substantial derivative of equation (C16) gives

(C13)

(C14)

(c15)

(C16)
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The continuity equation is

or

DP _ c 2 D log e
Dt Dt

p _c2Dp

p_ P Dt

_p
-y+ v. (pu-)= o

(cI_)

or

_p
-_-+pV,_+u. Vp =0

(c18)

so from equations (C17) and (C18), there results

DP = -c2V.__- _c2V2_
Dt

# (C 19)

Also, from equation (C 13),

D__PP+ ___D_____=0
Dt Dt _t

or

DP

Dt
_ _2t__.v___ -

at2 at

= _ a2d) _ 8_
...----¢=. -- o-

at 2 at

=_a__
at 2

(C20)

since second and higher powers of the velocity are neglected. Thus, from equations (C 19)

and (C20) the linearized wave equation (see, for example, ref. 31) is obtained:

c2V2q_ = 0__ (C21)
ot 2

which is the same as equation (38) in the text.
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Equation (C21) is the governing equation for the propagation of small disturbances

from a disturbance source at the origin of coordinates x,y,z through a fluid initially at

rest. For this equation to be applied to disturbances originating from a disturbance

source moving with speed V in the -x direction (e.g., a small lifting element), equa-

tion (C21) must be expressed in terms of moving coordinates x',y',z' so that

x' = x + Vt

y' =y

Zv=Z

t' =t
J

(C22)

This transformation leads to

0x,2 0y, 2 0z ,2

This transformed wave equation governs propagation of small disturbances from a moving

body. It should be noted that in equation (C23) the function q5 may be either a velocity

potential or an acceleration potential. The boundary conditions used in connection with

equation (C23) for most aerodynamic problems are:

(1) There is no flow through the surface of the body (wing) and no flow separation

from the wing. For the oscillating wing, this condition is contained in equation (C4).

(2) Uniform flow exists at infinity.

Expressions for the kernel function.- The function K which is required for the

solution (inversion) of equation (C4) represents an expression for the downwash field

induced by an element of lift which is pulsating at the reduced frequency k. In classical

aerodynamics such an element of lift can be represented by a doublet. Now the potential

function for a simple pulsating doublet satisfies the wave equation (C23), and hence is

admissible in the solution of our problem equation (C4). Further, since equation (C23) is

a linear differential equation, a superposition of doublet potentials is also a solution.

Therefore, our summation or integration procedure indicated by equations (C3) and (C4)

is permissible.

For subsonic free-stream conditions, the kernel function associated with a pulsating

doublet of unit strength is derived in reference 4 in the form
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exp - + -

02 .iw(x. _)___ [V_ 2K = lim _ exp (C24)

z-0 _z 2 V . _X2 + _2(y _ 7/)2 + _2z2

dk

where co is the frequency of the pulsation, and _ = _ - M2.

For supersonic free-stream condition, the function K is derived in reference 32

in the form

2 -i_(_-_)_x-_
K = _ liraexp V

z-O J__

_y_7})2 z2/cosMo_ _k2 _2(y__7)2 _2z_+ _

J,_k2 _ _2(y _ T/)2 - _2Z2

(C25)

where U is the unit function. It can be seen that these expressions contain singularities

which require careful treatment in the numerical solution of equation (C 4).

Solution of the downwash-kernel-function integral equation.- One method that has

been used at subsonic speeds for the numerical inversion of the equation (C4) is given in

reference 33. In this procedure the unknown distribution of lifting pressure Apn(_ ,_)

over the wing, associated with the nth mode of motion, is assumed to be represented by a

doubly infinite series

APn(_'_) = 8pV2 s2_--_- _2 I°t 0(aoon2b(n)

+ sin 0 \(al0 n

+ a01n_ + a02n_? 2 + . . .)

a n2 (a+all nT?+ 12 +'" ") + sin 20 20n + a21n_ + a22n_ 2+.. .)+.-._

where p is fluid density, b(q)

wise coordinate such that

is local semichord, s is semispan, and

(C26)

is a chord-

= fm/(7/)- b0?) cos 0

where fml0?) is the equation of the midchord line. The form of the series equa-

tion (C26) automatically satisfies boundary conditions on the lifting pressure at leading

edge, trailing edge, and wing tip regardless of the values of the unknown coefficients

ars n.
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Thedownwash w(x,y)
frequency:

is determined by the chosenmodeshapesandby the

eiCOt

(c27)

where Zn(x,y ) is the mode shape of the nth mode, and Wn(X,y) is the downwash magni-

tude for the nth mode at frequency w.

The procedure followed in the solution for the load distribution is as follows:

(1) Choose the reduced frequency value k for which the aerodynamic load is to be

calculated.

(2) Choose the mode-shape function Zn(x,y ) and obtain the downwash Wn(X,y ) at

a set of chosen "control" points (x,y) over the wing surface.

(3) Truncate the doubly infinite series equation (C26) so that it contains the same

number of unknown coefficients ars n as there are control points.

(4) For each control point in turn, substitute the appropriate Wn(X,y) into the left

side of equation (C4). Substitute expression (C24) and equation (C26) together with the

control point coordinate (x,y) into the right side of the equation (C4). Performing the

indicated integration numerically yields an equation which contains the unknown coefficients

arsn. Repeating this procedure for each control point leads to a set of simultaneous

equations which can be solved for the loading coefficients arsn for the nth mode at the

chosen frequency k and Mach number M. The aerodynamic loading has then been

determined in the form of equation (C26) and can be used in that form in flutter

calculations.
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6. EFFECTS OF AEROELASTICITY ON STATIC AERODYNAMIC DERIVATIVES

By John E. Lamar

Langley Research Center

ABSTRACT

The effects of aeroelasticity on some static longitudinal derivatives are considered

in this report as typical problems which the aeroelastician is called upon to solve.

Different solution techniques are presented and from these techniques; one, the "force-

slope method" (called herein), is selected by which the effects of static aeroelasticity may

be computed. In order to use the "force-slope method," the aerodynamic (only subsonic

speeds are considered) and structural influence coefficient matrices must first be deter-

mined. These methods are developed in some detail, after which solutions for a typical

configuration are given.

INTRODUCTION

The study of static aeroelasticity can be thought of as being divided into at least

four parts. In the first part, some of the static aeroelastic problems that engineers are

expected to solve are examined and examples are given. In part II, some different pre-

dication methods used to solve the problems outlined earlier are discussed. One of the

prediction methods developed is called the "force-slope method" and this method is cur-

rently being used at the NASA Langley Research Center. This method, as will be shown,

needs an aerodynamic and a structural set of input information. Therefore, in part III,

two different methods for predicting subsonic aerodynamics are developed and the accu-

racy is assessed. (The force-slope method is not limited to subsonic aerodynamics but

at this time the supersonic aerodynamic methods at the Langley Research Center have not

become operationally compatible with the rest of the force-slope-method solution.) Lastly,

part IV presents some derivation of three typical structural analyses employed on airplane

configurations and assesses their applicability.

SYMBOLS

an,2m

A

unknown coefficients of surface pressure modes

aspect ratio
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Aij -- _ _(an,2m)j (bn,2m)i
n m

b

bo

bn,2m =

C

c(_)

c l

Cm(_

Cno/

CA

CD,i

CDfii

CL_

CL

wing span

wing root semichord

l ff----_ C_r
1 vl - T/_'JO hi(O'71)ln(O)_72msin 0 dT1 dO

local chord

local half chord

mean geometric chord

section lift coefficient

section pitching-moment-coefficient curve slope about local leading edge

slope of sectional normal-force coefficient

aerodynamic force coefficient

induced drag coefficient (stagger theorem)

induced drag coefficient (thrust concepts)

lift-curve slope

lift coefficient

aC L

CLSe = -_e

CL i

Cm

Cm,aCSe -

CN

lift coefficient developed by ith mode

pitching-moment coefficient about _/4

normal-force coefficient
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thrust coefficient

flexibility influence coefficient of coiled spring

perpendicular distance from loading point of wing representable by a slender

beam to the elastic axis

dCn)

e

EI

x-location of local midchord at 7/

chordwise distance between aerodynamic center and elastic axis

cos(a r + Aa) "--_ for small angles

structural stiffness associated with bending

F,Fz

Fw,v(X,Y; _,Yv,Sv)

Fw, v = (Fw,v)left

GJ

total flexibilized force

influence function used in vortex-lattice method

+ (Fw,v)right

structural stiffness associated with torsion

hi(O,U ) ith mode shape

k

/n(O)

L

fractional change in either the twist angle or load distribution between

consecutive iteration cycles

cos 0
chordwise pressure modes; i.e., lo(O ) = --_--, l 1 = sin O, etc.

lift force; Lagrangian

m

m(x,y)

number of spanwise stations, tip to tip

mass distribution

M

M i

moment; Mach number

generalized mass, f_S h2(x,y)m(x,y)dx dy
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n

T

n Z

N

P

q

qo(V)

qj(v)

qi,qj

qi

normal direction

lift/weight

number of vibration modes; number of chordwise points in Multhopp scheme

pressure

dynamic pressure

0
coefficient of cot

coefficient of sin j0

pressure loading mode

pressure loading mode

ith, jth generalized coordinate

cyclic amplitude of jth generalized coordinate

generalized force

generalized aerodynamic force due to gust, hi(x,y ) dx dy

generalized aerodynamic force of the ith wing mode, Sf 8 hi(x,y)(O_-_dx

r = _(x- _)2 +(y_ r/)2 +(z- _)2

R,R2; total rigid load

S

Sij

t

dy

ratio of wing semispan to root semichord; one-half vortex-lattice panel width

wing area

element in structural slope matrix:

time

T torque

u

378

slope at i due to a unit load at j

perturbation velocity component in x-direction



ui _ velocity components in x,y,z directions (U + u,v,w)

U free-stream velocity; potential energy in a system

U strain energy

V perturbation velocity component in y-direction

V volume

W

W

vertical displacement; also perturbation velocity component in z-direction

amplitude of cyclic displacement

W weight

x i =_ displacement components in x,y,z directions (x,y,z)

x,y,z rectangular Cartesian coordinates

Xo,Yo

!

X

coordinates of elastic axis intersection with fuselage

dummy variable in x-direction

angle of attack

Greek Letters

_i induced angle of attack

_r rigid-wing angle of attack

_,7(_),7(_,_) local distributedcirculation

F,F(u) circulationdeveloped over a given chordwise segment,

_e elevator deflection angle
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a set of distances along the X,Y,Z axes, denoteinfluence or loading-
point location

ACLnz increment in lift coefficient dueto a unit load factor

Ap,Ap(0,_),Ap(_,_) lifting pressure

sum of all the forces resulting from flexibility

change in angle of attack due to flexibility

ith incremental twist angle distribution due to flexibility

ALFi ith incremental twist load distribution due to flexibility

chordwise variable; streamwise slope of mean camber line due to structural

flexibility - referenced to rigid wing or airfoil

chordwise variable

A

_j(Y)

sweep angle (either leading edge or elastic axis), degrees

unknown set of polynomial coefficients of the lateral (vertical) displacement

of a plate

P density of air

w i

CO

frequency associated with ith mode shape

circular frequency

_2

aqj
m m

acceleration potential

pressure distribution associated with the jth vibration mode

coordinates perpendicular to and along the elastic axis (see fig. 19)
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m

slope of mean camber surface in an arbitrary direction due to a (system of)

force(s) (see fig. 19)

energy gained in the system by having an external force act upon it

ac aerodynamic center

Subscripts

av

B

cp

ea

F

f

G

i

J

l

average

bending

center of pressure

elastic axis

total or combination of rigid and flexible

flexible results only

gust

particular control point; also range index

particular loading point; also range index

lower surface

LE leading edge

n

R

particular spanwise value; particular value

having to do with rigid loadings

reversal

ref reference

T torsion

TE trailing edge
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u upper surface

wb wing-body combination

particular vortex-lattice panel

free stream

V2 Laplacian operator

Mathematical

[]

[]

()

change in

square matrix

diagonal matrix

column matrix

Matrices

aerodynamic influence coefficient matrix, slope/unit lifting pressure

aerodynamic influence coefficient matrix, slopeJ(unit circulation/free-

stream velocity)

area matrix over which the lifting pressure acts

kind of area matrix (2 times grid area/grid chord), in units of length

total force acting over each grid element, Rigid + Loadings due to

flexibility

aerodynamic influence coefficient matrix, slope/(unit circulation/free-

stream velocity)

aerodynamic influence coefficient matrix used in reference 11, slope/unit

multiplier of chordwise pressure function
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®

®

rigid loading on each grid element, force

structural-slope matrix, slope/force

boundary-condition matrix, local slopes

matrix of changes in downwash due to flexibility

lifting pressure coefficients

loadings due to flexibility on each grid element, force

local structural slope

I - STATIC AEROELASTIC PROBLEMS

The static aeroelastic problems to be discussed are:

(1) Torsional divergence - Torsional divergence occurs at a flight condition where

the air loadings on the elastic wing produce an infinite twist angle. This condition is

given in terms of dynamic pressure or airspeed.

(2) Aileron reversal - Aileron reversal is defined as the flight condition at which

the aileron becomes ineffective. It is given in terms of a reversal dynamic pressure.

(3) Aerodynamic-center movement and control power - Flexibility affects the pres-

sure loading distribution and consequently the pitching moment and static margin. The

designer must know the extent of the changes in static margin in order to determine

whether (1) the airplane can be trimmed and (2) whether enough control power is available

to meet the required response criteria.

(4) Flexible lift-curve slope - The problem of flexibility relates to the change in

CLc _ at a given Mach number with variable dynamic pressure q.

(5) Effect of load factor - The load factor, of course, is related to the effect of

inertia and longitudinal maneuvers on the aerodynamic characteristics.

,,_, " -k_- r_k .... I-_1_.w_,f_+_ _h_n_ Jm r_lmf_d to how an air-_vj Jig shape and cruise _11,_,= - ,,,_ t-.......... _-_ .... ,- ...........

plane on the ground must be built so that when it is at its cruise point it has the correct

aerodynamic shape. This must be done while keeping in mind that when the airplane is

being built, it is supported by the jig so that in essence it is in a zero-gravity environment.
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Torsional Divergence

Two-dimensional wing (or a section on a three-dimensional wing).- If the airfoil

shown in figure 1 is used with 6e = 0, an analysis can be developed for the prediction of

dynamic pressure required for torsional divergence in the manner of reference 1.

Allowing the rigid airfoil which is attached to a linear coiled spring to develop an

air load at the same angle of attack causes the airfoil to change angle of attack by an

amount Ate. Let

A(_ = 0 (1)

Then, the restoring torque developed by the linear spring is just

AMea = _ = AOl ¢ fl(q) (2)
CO0 COO

This relationship is in contrast with the additional moment produced by the increase in

angle of attack of

AMac = Cl_ _qce = f2(q) (3)

where, by definition, the aerodynamic center is that point on the airfoil that does not

experience a change in the pitching moment with a change in the angle of attack. Conse-

quently, the change in pitching moment comes solely from the lift acting at a distance from

the point where the moments are to be summed. That is, the lift acts at a distance e

from the elastic axis.

Now, if a plot is made of the amount of restoring moment available due to an increase

in angle of attack per increase in angle of attack (_-_-_) as a function of q, a straight line
%v ]

of zero slope is obtained, since AMea ¢ AMea(q ) as shown in figure 2, However, the

incremental moment resulting from the additional lift produced is seen to be a function

of q.

The q at which the two curves cross is the divergent dynamic pressure qD" After

or above this q, the restoring moment of the wing structure is not sufficient to counteract

the lift induced torsions and the wing will therefore twist off. Another way of looking for

the divergent dynamic pressure is that given by rewriting equation (2):

O = COOT

and defining the total aerodynamic torque as

T= (CLe+ Cm,acc)qS

where S is the area over which the section characteristics are to be valid.

C L= CLa(a R+ 8)

(4)

Now, since

(5)
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the solution for 0

and

Therefore,

can be obtained as follows:

O= C00[CL_(_R + 0)e + Cm,acC_qS (6)

8(1-COOCLotqSe)=COO(CLolOtRe+Cm,acC)qS (7)

O = C00(CLc_°_Re + Cm'acc)qS

1 - C00CLo_qSe

Now, a value of q

denominator of equation (8) is set equal to zero;

1 - cOOCLaqSe

Then, solving for q gives

Note that qD = f(CLa ).

is sought such that an infinite twist angle is produced.

(8)

Thus, if the

= o (9)

1 (10)(q) 0 -_o = qD =
- C 00CLolSe

Three-dimensional wing.- Torsional divergence for a three-dimensional wing can

be found from the force-slope method discussed in a subsequent section either by

(1) solving for the q required to give an infinite twist angle (or pressure) or (2) plotting

the ratio of CLa of the flexible wing to that of the rigid wing as presented in figure 3.

The planform shown in this figure has a torsional divergence q at about 2345 lb/ft 2

(112 278.6 N/m2) at M = 0.9.

Aileron reversal.- The load changes produced on the elastically supported rigid wing

of figure 1 by an aileron deflection of 5e lead to the following equations (ref. 1):

C L = CLa0 + CLSe5 e (11)

Cm,ac = Cm,aCSe 5 e (12)

Following the same line of reasoning used in the second approach for torsional divergence

results in

O= cOOT=COOqsIe(CLaO+ CL6e6e)+ CCm,aC6e6el (13)
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and

0

_e =

C 6_qS(eCL6e + cCm,aCSe) - eCLse + cCm,aCSe

1 - C6_)qSeCLa 1 eCLa
C E)eqS

(14)

Substituting equation (14) into equation (11) yields

C ( 1 eCLa ICL = La _e 6e =

C 00qS

(15)

The aileron becomes completely ineffective when CL = 0. Thus, setting C L = 0

gives a solution for the q at which aileron reversal occurs:

or

(e ) (' o)CL a CL6 e + cCm,aC6e + CL6 e CS-E)qS eC L = 0 (16)

CL5 e

CLaCCm,aC6e - COOq S
(1'/)

Then,

qr --

-CLSe

cOOCLaCm,aCSe cS

(18)

Aerodynamic-center movement and control power.- An example of the fact that the

airplane aerodynamic center AXac is dependent on flexibility can be seen in figure 4 for

several different structural representations when the airplane is at M = 0.9. The effect

of structural representation shown in this figure is discussed in a subsequent section.

The design engineer must know whether enough control power, which comes primarily

from the horizontal tail, is available to handle any changes in the stability level brought

about because of flexibility.

Flexible lift-curve slope.- An example of the fact that the lift-curve slope is also

dependent on flexibility can be seen in figure 5 for an airplane wing at M = 0.9. Again

( ) ,sthe effect that the structural representation has on the variation of CLa CLa R

discussed in a subsequent section.

Effect of load factor.- From figure 6 the effect of including the weight at a load fac-

tor n z of 1 can be seen to provide what is called an "inertial relief" on the center of
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pressure movement due to flexibility for this wing at M -- 0.9. The reason for this

effect is that since the weight acts (for small angles of attack) in a direction opposite to

that of the lift, its effects on the structure are qualitatively in the opposite sense as the

lift induced deflections and slope change.

Jig shape and cruise shape.- Now the last listed static aeroelastic problem is con-

sidered; that of going from the zero-gravity airplane shape in the jig to the desired cruise

shape where it is to be acted upon by both air and gravity forces. Figure 7 plots the airfoil

coordinates z/c and x/c at the spacewise station 2y/b = 0.6925 and is an extreme

example of the changes in shape that a lightly loaded variable-sweep transport can undergo

due to the air and gravity forces. (See ref. 2.) It can be seen in this example that the

wing experiences both a change in its camber shap@ and twist angle at the section shown;

whereas the tail undergoes primarily a change in the twist angle. Knowledge of the cor-

rect jig shape is particularly important for this configuration since the wing and tail were

to be held together coplanarly in the cruise shape by a vee-shaped shear tie.

Some static aeroelastic problems and procedures for finding two-dimensional solu-

tions of them have been examined in this section. Solutions valid for three-dimensional

wings are taken up in the next section.

II - METHODS FOR PREDICTING AEROELASTIC EFFECTS

In this part of this report some particular methods of predicting the effects of aero-

elasticity are examined. The first method is that of iteration and is one which might first

be considered in an effort to relate the aerodynamic loadings to the structural displace-

ment or slope changes. The second method is the reference-surface method, which is a

kind of similarity relationship and not too well known. Its main ideas are mentioned in

this section so as to acquaint the reader with yet another method that one airplane company

has used in determining the aeroelastic effects. Next the modal approach, which is in wide

usage among people solving the flutter problem, will be adapted to solving the static prob-

lem. The last method is called the force-slope method and is one that is in use at the

Langley Research Center in predicting aeroelastic effects.

Iteration Method

From reference 3, the iteration scheme is described as follows: "If an initial

(rigid)* load is applied to a lifting surface, the structure deforms causing an incremental

change in the angle of attack, i,e., a twist angle. The twist angle produces an incremental

change in lift, i.e., a twist load. The twist load in turn causes another incremental angle

of attack change, which produces another incremental twist load. This procedure continues

*Rigid Load means airload resulting from rigid wing.
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until equilibrium is reached. The total twist angle is then the sum of all the incremental
twist angles,andthe total lift is the initial (rigid) lift plus the sum of the incremental

twist loads." Slender beam analysis was used in this reference and no chordwise bending

(camber) was considered.

The iteration procedure mathematically, according to reference 3, looks like

(19)

because lift over q rather than lift itself is the quantity applied to the structure in

reference 3.

Summing the above terms leads to

Ltotal LR ALF1 ALF2

=_ +q__j_+q2_+ . . . +qn
ALFn

qn+l
(20)

Aatotal Aal Aa2 q2ha3 qn-I Aan

q - q +q"_-+ q_+ • " " + qn
(21)

Because successive iteration can run into excessive time and cost, the sums of the series

based upon knowledge of only a few terms were sought. A good approximation for the

(n+l) term of the series is given by

ALF__.__n= k ALFn-I (22)

qn+l q qn

where k/q is dependent on the ability of the airplane structure to resist twisting, and

its determination is discussed in a subsequent section.

Reference 3 further states that: "The validity of this relation lies in the assump-

tion that successive twist load distributions (and therefore successive twist angle dis-

tributions) are of similar shape, an assumption which has been proved reasonable."

Hence

+q q2 q2 / q2/
(23)

t-q = "q-- + + q2 + q3 + q4 + (24)
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But,

Hence,

_-q+_ + q3+ q4+ . . . (25)
1

Similarly,

Ltotal LR

q q

AWtotal

q

(26)

(27)

Thus, only two iterations are needed to find convergence or the sum of the series, since

k/q Recognizing that Ltotal = L F yields

__._ . 1-

t lst cycle Convergence;

Net flexible loss

can be found from two trials.

LF/q

LR/q

This relationship is shown graphically in figure 8. Thus the change in the lift or lift

coefficient due to flexibility has been determined.

From reference 3, it is noted that: "Similar expressions may be readily developed

for flexible-to-rigid ratios of rolling moment and pitching moment."

Reference Surface Method

The reference surface method, a kind of similarity relationship, is also defined in

reference 3, where it is based on the iteration method and the measured flexible-to-rigid

aerodynamic ratios of a _own wing. These ratios are adjusted to account for the differ-

ences in geometry, stiffness, and design load requirement between the known wing and the

wing being designed. The adjustments are made by computing an effective k/q for each

wing which even accounts for some torsional effects and then correcting the "net flexible

Equation (28) can be written as

(29)
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From reference 3, the parameter k/q is shown to be related to the ability of the

structure to resist a twist load and ALF1/q to the ability of the structure to resist the
L R

rigid load. In cases where the rigid load distribution is very similar to that of the twist

load, ALF1/q and k/q will approach each other numerically. In the more general
L R

case, they will be very different. Hence, an "effective" stiffness is determined not only

by actual stiffness but also by the distribution of the applied load. Thus,

1 - L_)old

k)new l1-_- q/new

(30)

((L /LR) w)may be found. Reference 3 gives details for computing (k/q) byand so F ne

equations and graphs.

Modal Approach

Following the approach presented by Dr. E. Carson Yates in paper number 5

which involves Lagrange's equation and also the approach of reference 4 permits equa-

tions of motion to be written for the case of a wing which has no damping, as follows:

N

Micli+ wi2Miqi = Qi = QM + Q? = _ Q:-i,__Mqj+Q? (31)

j=l

where these symbols are defined in the symbol list. Now, employing the concepts of ref-

erence 5 yields

QijM = 8_qbos2Ai j (32)

where

The bn,2m

Aij = _(an,2m)j (bn,2m)i
nm

can be calculated for each vibration mode from the definition:

bn,2m=S_lll_-_2_:hi(O,_?)ln(O)_?2msin 0 d0 dT?

(33)

(34)
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The an,2m terms are calculated for each mode in the subsonic kernel-function

program described in reference 5, where orthogonal vibration modes are actually used

in the analysis. In the preceding report by Dr. Yates, the unknown deformed shape of the

wing is assumed to be made up of a linear combination of the vibration modes. The

vibration modes are used here in the static case only because they constitute a complete

set of deformation shapes and hence they can accurately fit any resultant deformation

shape. Their use here does not relate to dynamics problems.

sis purposes to let

and

Q? M= Qi(N+I)

It is convenient for analy-

(35)

w G

-U-- = qN+l

For steady flight the gust is just equal to _, and is taken for convenience to be at

1 radian. Hence, combining equations (31) and (32) gives:

%
= 8_qb°s2A2(N+I) --U-"

(36)

(37)

where

qi = qi eiwt (38)

and _ is the frequency of gust input (0 for this case). Solving this linear set of equa-

tions for qi indicates how much of each mode's results belong in the final answer. That

is, for example:

w G
C L = CLI(] 1 + CL2a. 2 + . . . + CL_ y (39)

and so, if _G/U is set equal to 1

CL_, F= CL_I{_tr, +CT.^.__2qo_ + • • • +CT,_ (40)

The other aerodynamic characteristics of interest can be calculated in a similar manner.

A similar method has already been developed and appears in reference 6. This approach

can be characterized by asking the question: How much of the lifting pressure generated
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by the wing in each of its basic modes of vibration plus that of the rigid wing in a uniform

flow field is required to bring the flexible wing into equilibrium?

Force-Slope Method

The force-slope method is a closed-form solution for predicting the aeroelastic

effects. However, whether the solution simply employs matrix-inversion concepts (as

will be developed) or must be handled in an interpolative sense (as in least-squares

method) depends on the relationship between the aerodynamic and structural paneling

methods. If they are the same then a simple matrix inversion may be used, otherwise

an interpolative process must be used.

The force-slope method can be developed in the following manner (which follows

basically the method of ref. 7) by making use of four basic aerodynamic and structural

relationships expressed in matrix form:

(1) Downwash-pressure:

This matrix may be broken up into a rigid and a flexible part, which becomes

(2) Slope-force:

fR f

f

(3) Total force - rigid and flexible:

(4) Force-pressure:

{F}= q_B] {_CP}total = q[B] {_CP}R + q[B] {_Cp}f

Hence, substituting a part of equation (42) into equation (43) gives:

and substituting equations (44) and (45) into equation (46) yields

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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Solving for <ACp} f leadsto

As mentionedunder the study of torsional divergence,for three-dimensional wings
a solution for the dynamic pressure can beobtainedfor which infinite flexible pressure
loadings would result. A study of equation(48) indicates that this condition will occur for

canbe found by solving for the smallest positive root of the resultingand so the qD
polynomial.

Oncethe {aCp} f is solved for, a solution for <F} can be foundas:

(50)

and then summing up the results yields

Hence the flexible-to-rigid ratios can be formed by dividing by R Z. This operation
leads to

F Z A FZ
m = 1 + _ (52)
RZ R Z

It should be noted that the {R} can be either a distributed air loading or a weight

loading, providing the two types have signs consistent with their directions.

Now, the use to which the just-determined flexible-to-rigid ratios for both lift and

pitching moment may be put are examined. As an example, the equations are developed

for the change in center-of-pressure location due to flexibility for a load factor n z

where AC L ,
nz

(CL) F= {C L h _ + AC L ,n z
\ _ ,wb] F nz

!

is the increment in lift coefficient due to a unit load factor n z

of 1.

C53)

.... / ,,r\[A_\

= (C ) (_)C o_ +/_-_)_-)CL nz (54)
(CL)F Lol,wb R R L_,w b T

nz ,wb
Y

n z= 1, L F=w; hence,In steady lg straight and level flight, then
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or

Thus,

+(-__y__'_
(CL)F- q_S- (CL°_,wb)IR(_)C (_)n_=l \"_)t--R')CL ,

L_ ,wb nz,Wb

+AF =W t = (C L _ ,Wb)R("_)C (_)n_=l
q_,(1 +)CLnz,W b _S_ CLnz,wb L_, Wb

(Ot)n,z= 1 =

nz=l
ms _wb

--C =V-mA-URL w/qs
+

w
q-S\_] k.--R--]Cmn_ [

w/qs J

(55)

(56)

(5"/)

(58)

Substituting for (Ol)n,z= 1 from equation (57) gives

I "_LL) (' " ,wb \R]c_S(d_)CLn,z,Wb,wb(_SS) zJ1
_" = \a-'c'L-L)R - R\R]Cm_ (F'_ Lo l \c ]\R ]Cmn, I

(59)

Hence,

whe re

!

AXwb

F>c Lnz ,wb
_ _1+ F

m ,
n z

(60)

distance from the center of gravity to moment reference point nondimensional-
ized on

For _Xcp > O, the center of pressure of the flexible wing is behind that of the rigid wing

since positive stability is represented by a negative value of aCm/aC L. Contrarywise

for _ < O.
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The Boeing Company in reference 8 has extended the force-slope method to large

flexible transports. Other companies use the force-slope method in support of their

static aeroelastic prediction efforts.

SUMMARY REMARKS ON PART II

In part II several methods for predicting the effects of aeroelasticity have been

examined and are summarized as follows:

(1) The iteration method is simplest of those using computer techniques, and is

easiest to understand; however, it can be inefficient (slow to converge} if the dynamic

pressure specified is near the divergence dynamic pressure.

(2) The reference-surface method can be used to get a quick idea of the effects of

the flexibility on a wing without having to know a great amount of detail about its struc-

ture or weight.

(3) In the modal approach, answers can be accurate if enough vibration modes are

used or enough points in structural analysis are taken to define the mode shapes adequately.

In order to determine if enough have been used a convergency check on CLc_,F is often

employed. Also concerning this method there may be the problems of (1) not having modal

data available and (2) everytime the mass distribution changes so does the generalized

mass. However, this solution does yield continuous pressure loadings.

(4) The force-slope approach leads to closed-form solutions, easy to program, and

is the method chosen to be used for the solutions in this lecture.

Methods for developing the [A] and ___FS_matrices used in the force-slope

approach are presented in the following sections.

III - THEORETICAL SUBSONIC AERODYNAMIC METHODS

Two methods are developed for predicting the surface load distributions at subsonic

speeds for a given downwash distribution. The first is the kernel-function method and the

second is the vortex-lattice method.

Kernel- Function Method

The development of the kernel-function method is based on a potential function,

linearized Euler equations, and the continuity equation. They are used together with

Poisson's equation, the procedure which is outlined in reference 9 and is presented here

in detail.
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Potential function.- The acceleration potential to be used is that which will produce

a pressure field and is defined by

£=P_-P
p (61)

Euler equation.- The equations of motion for steady, inviscid flow can be written in

index notation, where repetition of a suffix indicates summation over that suffix, as

_ui 1 ap (i,j = I, 2, 3) (62)
uj _ = p _xi

where

u k ==_ (V + u,v,w) (63)

and x 1 = x, x 2 = y, x 3 = z. Linearizing (i.e., neglecting products and squares of per-
tubation velocities and their derivatives) allows the equations of motion to be written as

_ui 1 ap (64)U_--

ax pax i

Differentiating with respect to x i leads to

U a-_-(aui_= I a2L=_ I V2p (65)
0xi\ _x] Pax i _x i P

Continuity equation.- The equation of continuity for incompressible flow in index

notation is _ui
= 0 (66)

_x i

Here, the order of partial differentiation may be interchanged to yield

Consequently, making use of equations (61) and (67) in equation (65) yields

(67)

V2_2 = 0 (68)

Hence for incompressible flow the acceleration potential satisfies Laplace's equation.

It is known in general that the potential _ can be defined at any point by making use of

Poisson' s equation:

55SV( 1 _) a--_!_ dS (69)1 v 2 + e_(x,y,z) = _ dV + 4_

With V2_ = 0

..I _1 o_

Su,S l ,Swake

and no pressure jump existing across the wake,
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1 F-_(x,y,z) _ _S 1 a_

Su,Sl

(70)

The normal n in this case is z, where z is in the same direction as n on the upper

surface and in the opposite direction on the lower surface. Hence

 SSs E ('1_(x,y,z) = _ _ 0-7 + $2u -_zk_JJ dS + _ _ _ + el _ r dS (71)

Now since both Su and Sl have the same projected area and use the same limits and

since 0_/az is related to the downwash w, which is continuous across the pressure

sheet representing the wing, by equations (61) and (64)

(72)

and equation (71) can be written

(73)

Now, with

_U _

P_o - Pu
(74a)

and

then

With

Pl - Pu = _p

(74b)

(75)

r=_(x- 4) 2 +(y-_)2 +(z- _)2

and the wing midsurface restricted to _ = 0, then

(76)

-Z

_x - _)2 + (y _ _/)2 + z2] 3/2

(77)

so that

_(x,y,z) = - 1 _ Ap 2_ dS
47r v# S P r 3

(78)
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The pertubation downwash is required to vanish at

velocity is the only velocity which exists there. As noted previously (eq. (72)),

so that

1 fx a_2dx,w(x,y,z) =

x = _oo so that uniform free-stream

(79)

Hence, combining equations (78) and (79) yields

1 S x 8 ( __._)f_' Ap Z__dSdx, (80)w(x,y,z) =_ oo_'zz- S p r 3

Now w(x,y,z) is the downwash of a field point. If the field points are required to lie on

the wing midsurface, just as the pressure field is required to lie on the midsurface of the

wing, then equation (80) becomes

w(x,y,O) 1 Sx S_ S
=_m lim 0 Ap z d4dT/dx'

U 8_ _oo z-O -_ q r3
(81)

where w(x,y,0) is merely the boundary condition and is equal to
U

w(x'y'O) = (_x)U (82)

Performing the indicated operations in equation (81) leads to

w(x,y,O) 1__ /"fAP_,Z/) 1 11 + x-{ Id4 dT/ (83)U =8_ I ] q (y_7/)2 _(x- 4) 2+(y-77)
JJS

This equation represents the zero frequency limit of the equation previously given by

Dr. Yates as equation (73). Theterm _1 I x- _ _
(y 77)2 + is called the

_(x- 4) 2 +(y- T})

steady-state kernel function and represents the downwash at point (x,y,0) produced by a

pressure dipole of unit strength lying at the point (4,T/,0). This term is the zero-frequency

limit at zero Mach number of Dr. Yates' equation (74). Equation (83) could be derived

from pressure dipole considerations almost directly.

Solution technique.- Some authors (refs. 5, 9, 10, and 11) choose to replace the

unknown surface pressures by a chordwise set of pressure mode shapes with unknown

coefficients at each spanwise station (which is to be an integrating station in the spanwise

quadrature formula). It can be expressed as
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where

N-1

hp(0 j/) qo0/) 0
q = _ cot 5+ £../

j=l

q'(-_sin j0
qc(v)

= -c(v})cos0 + d(77)

(84)

(85)

These pressure terms are integrated chordwise at each spanwise integrating station for

each pressure mode. A singularity occurs when the influence of each pressure mode is

sought at the same spanwise station at which the downwash is specified. There are expan-

sion and finite-part approaches which allow an answer to be determined. A set of simul-

taneous linear equations are formed from as many control points as. ----(qJ(V/n)/q) terms
which in matrix notation are of the form

The qJ(T/n) are solved by matrix inversion and hence the surface pressure and wing
q

aerodynamic characteristics can be found.

Discrete Loading Representation

(Vortex Lattice)

Determination of influence coefficients.- Another method that can be used to solve

for the pressure loadings in equation (83) employs a vortex-lattice representation. In

this method the pressure is assumed constant over a small area of the wing and the wing

loading is therefore not a smoothly varying function but a set of discrete loadings which

resemble a bar graph in two directions. The solution is formulated as follows.

Assume that Ap(_,W) is constant over a small spanwise distance (2Sv) from say
q

Yv - sv to Yv + Sv at a given value of (_/c) where Yv is selected as the spanwise

coordinate at which the pressure difference is to be determined.

It is also known that

ap(_;0) = _
q U

where y is the local distributed circulation, and

where r

from

gives

(87)

r= - ._ yd_ (88)
_;0

is the circulation strength accumulated over a given chordwise segment, say

_o to _1"

Now differentiating equation (83) with -_w_-_=n_ fn._ _ and making use of equation (87)
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Vmax Yv+Sv

F_wlx,y,o)/Q
v--1 Yv-Sv

Now if Y(4,W) is assumed to be constant from Yv - Sv to Yv + Sv for a given

4/c, then

Y"f :x:c 11p_(x,y,o)/q 1 fs : d,:I.0(4/c1 ] _: :_ u (y-_)2 +

Integrating equation (90) with respect to T/ (as Crigler did in ref. 12) yields three terms

which can be identified as the contributions to downwash of the two trailing legs and the

bound portion of a horseshoe vortex having a lateral spacing of 2s v and located at (4/c)

and Yv where 40 < 4 < 41. This relation is called the influence function and is denoted

by Fw, v indicating that this is the downwash produced by the Pth rectangular horseshoe

vortex in the x-y plane at a particular value of 4/c. The parameter Fw, v is a func-

tion of x,y;4,yv,sv, as given in the following equation:

(89)

(90)

Fw,v(X,y;4,Yv,Sv) =
(x 4) (x- 4) 2

(Y - Yv) + Sv

(Y - Yv) - Sv \

x- _)_.+E(y-_) - s_]

t- (x - f) _.)+[(Y Yv)-s_2} I/

+

(x - f) )((x- 4)2+[(Y Yv)+S_2} 1/2

Bound-

vortex

effect

Trailing-

leg

effects

(91)
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If this result is comparedwith that of Glauert in reference 13 (pp. 158-159), the expres-

sions are found to be different because the positive x directions are opposite. The

coordinate system used herein is shown in figure 9,

Solution technique.- Integrating now the results of equations (90) and (91) in the

chordwise direction yields

Vmax

w(x,y,0)-__xT_( _)-, 7, ,
v=l

However, before this equation is integrated in small chordwise increments, it should be

noted that over a small range of _ the function Fw, v will not vary too much so that an

effective value of Fw, v can be associated with a range of _ and according to equa-

tion (88), also with a range of F. Hence

nmax nmax

w,x 0 1 Z ZU = 47rU rnFw, n = r'n Fw ,n (93)
n=l n=l

where

r' rn
n 47rU

If the span loading is symmetrical, only half of the horseshoe vortex strengths but

still all of the influence functions need be considered, so that

where

nmax/2

w(x,y,0) = _n"WI-- F' F'
V n w,n

(94)

Fw, n = (Fw,n)right + (Fw,_n)left

Taking as many boundary points (fig. 10) as unknown circulation strengths yields a set of

simultaneous linear equations which are, as before, so!ved by matrix inversion

(_rn.):FF, -1-1¢w'_Lw,nj
•r ..... _ _*._ -_ .... ln÷_,_n _+_,_n_,+he _]lr_w_ th_ _rodyn_rnic characteristics to be found.

(See refs. 14 and 15 for other vortex-lattice-representation developments.)

(95)
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Determination of "Best" Aeronautical Results for the Theoretical Methods

An analytical methodthat provides a numerical solution from information at only a
few places or that uses integration procedures which canbe carried out over a range of
grid sizes must have either preferred places for information to be supplied or a preferred
grid size for a particular wing. This section describes four methodswhich may be used
to determine whenthe "best" answers are to be expectedfor a numerical solution to the
subsoniclifting-surface problem. The four methodsto be usedherein are:

(1) The "downwash-fit" methoduses the results of the numerical solution to com-
pute the downwashall alongthe chord, including the control points; these computations
are then comparedwith the original downwash_s specified in the problem statement.

(2)The "correct leading-edge-thrust" methodis onein which the thrust computed
by the far-field theory is comparedwith the thrust developedin the near field by making
use of the section pressure loadings.

(3)The "converged-aerodynamic-center" methodconsists in examining the
aerodynamic-center variation with different sets of either stations or grid sizes to deter-
mine where convergencetakes place.

(4)The "converged CL " methodexaminesthe lift-curve-slope variation with dif-
ferent sets of either stations or grid sizes to determine where convergencetakes place.

Downwash-fit method.- In figure 11 can be seen the relationship between the chord-

wise pressure loading, the downwash, and the mean camber line required for both typical

two-dimensional (2-D) and three-dimensional (3-D) results. At the top of figure 11 are

the results for a two-dimensional flat plate at angle of attack, in the middle are those of

a two-dimensional cambered wing at _ = 0 and at the bottom are those for a flat three-

dimensional wing at angle of attack. The three-dimensional-wing results show that the

wing has pressure loadings made up of both flat-plate results and induced-camber loadings.

The downwash-fit test is illustrated in the second plot at the bottom of figure 11. It

can be seen that the original downwash (solid line) is constant along the chord (corre-

sponding to a wing at angle of attack) whereas two numerical solutions result in downwash

distributions which oscillate about the original curve. The short-dash-line results might

come from a least-squares solution; whereas the line with crossmarks might result from

an even determined solution such as the modified Multhopp (ref. 11).

Correct leading-edge-thrust method.- The Munk stagger theorem leads to

1

CD, i = A _ d_7-1 yogi
(96)

In addition, resolving the aerodynamic force (fig. 12) into components and assuming small

angles of attack gives
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CD,ii = CL_ - C T (97)

These two results should be the same ifthe distributed thrust is correctly predicted.

Since the induced drag or thrust is the most sensitive of the aerodynamic characteristics,

a comparison of these two results is a good check on the chordwise loading distribution.

The modified Multhopp method has used this procedure to determine the validity of its

answers. A typical pattern of stations where information is to be supplied for the modi-

fied Multhopp method is shown for a general wing in figure 13 for m = 7 and N = 3.

Induced drag results obtained by using many different patterns for an A = 7 rectangular

wing are shown in figure 14. From figure 14 it can be seen that for N = 2, m = 13 and

for N = 4, m = 39 (filled symbols) the two induced drag results are the same. Hence

either pattern should give equally good results. However, the figure does show that for

increasing the number of chordwise stations at a given number of spanwise stations the

results do not approach those of the filled symbol, instead they move farther away. Thus,

care must be used in selecting the number and location of control points so that a proper

balance or proportion is achieved over the planform.

Converged-aerodynamic-center method.- At the top of figure 15 the variation of the

aerodynamic center for the A = 7 rectangular wing is shown for different patterns for

both the modified Multhopp and the vortex-lattice methods. It can be seen that the patterns

which gave good induced drag agreement (filledsymbols) lie on what appears to be the

converged-aerodynamic-center results. Note that the result from the vortex-lattice

scheme showed no variation with number of spanwise panels and is slightly aft of the

converged modified Multhopp results.

Converged-CLo _ method.- At the bottom of figure t5 the variation of the lift-curve

slope for the A = 7 rectangular wing is shown for different patterns for both the modi-

fied Multhopp and vortex-lattice methods. Here, too, it can be seen that the patterns which

gave good induced drag agreement (filledsymbols) lie on the converged-lift-curve-slope

results. Note that the vortex-lattice results are sensitive to the number of spanwise

panels and its lift-curve slope tends to converge to a slightly higher value than the modi-

fied Multhopp results.

Comparison of Analytical Methods With

Each Other and Experiment

After methods have been employed to indicate when best agreement of results can be

expected from the numerical solutions, the "best" answers that can be obtained from dif-

ferent methods will be compared with each other and with experiment to determine which

• _ .... 1,_n_._ the ['A7 matrix. The following aerodynamicnumerical solution to select In ...... _.A.._, u J

characteristics of several wings are selected for use in the comparison process:
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(1) Lifting pressures

(2) Span loadings

(3) Overall lift coefficient

(47 Aerodynamic center

(5) Section lift-curve and moment-curve slopes and some of the preceding aero-

dynamic characteristics as a function of sweepback.

Lifting pressures.- Comparisons are presented in figure 16 of lifting-pressure

coefficient on a modified delta wing as obtained by using the modified Multhopp, vortex-

lattice, and subsonic kernel-function solutions and in figure 17(a) on a variable-sweep

wing by using the modified Multhopp method and experiment. In figure 16 the subsonic

kernel function (wing alone) and the vortex lattice (both wing alone and with fuselage and

tail) agreed well over most of the span except near the tip where the subsonic kernel-

function results indicated that a negative lift was generated. The Multhopp results agreed

well over the rear 50 percent of the chord but disagreed over the forward portion of the

chord. The effect of fuselage and tail on the vortex-lattice results reduced the lifting

pressure everywhere by a small to moderate amount.

Figure 17(b) shows that the modified Multhopp does predict well the experimental

lifting-pressure distribution across the wing.

Span loading.- In figure 17(a) theoretical span loadings from the vortex-lattice and

modified Multhopp methods are compared with experiment and the modified Multhopp

methods seem to give slightly better agreement with experiment than the vortex-lattice

method.

Overall lift coefficient and aerodynamic center.- In figure 17(a) it can be seen that

whereas there is no appreciable difference between the two theoretical C L results that

the v0rtex-lattice aerodynamic-center result is closer to experiment than that of the

modified Multhopp.

Section lift-curve and moment-curve slope.- In figure 17(c) the modified Multhopp

method is seen to predict reasonably well the section lift-curve and moment-curve slopes

found experimentally.

Aerodynamic characteristics as a function of sweepback.- Figure 18 shows a com-

parison between the modified Multhopp and vortex-lattice methods and experimental values

of CL_ and aerodynamic center at different sweep angles. Whereas, there is no appre-

ciable difference in CL_ prediction given by either method, both are about 10 percent

higher than experiment. However, for the aerodynamic center we see that the vortex-

lattice method gives better agreement with experiment than does the modified Multhopp

method.
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SummaryCommentsonPart III

The Multhoppmethodhas beenshownto give generally goodagreementwith experi-
mental section data andyet to result in anaerodynamic-center location not in as good
agreementwith experiment as that foundfrom the vortex-lattice method. The vortex-
lattice methodtendedto give goodagreementwith the subsonickernel-function method
exceptnear the wing tip where the kernel-function results appearedincorrect.

Boththe subsonickernel-function andvortex-lattice methodscanbe usedto predict
the aerodynamiccharacteristics of arbitrary as well as multiple lifting surfaces. The
subsonic kernel function gives continuouspressure distributions, whereas the vortex-
lattice representation gives rise to discrete (bar-graph type) loadings or average pres-

sures. In addition, the subsonic kernel function handles the edge conditions exactly,

whereas the vortex-lattice method handles them only approximately.

Nevertheless, the lattice method does generally give good results both locally and

overall. So, in light of the previous discussion and personal experience, it was decided

to use the vortex-lattice method to determine the aerodynamic influence coefficient.

Before this determination was possible, however, it was necessary to know the relation-

ship between (Fn) , (ACp_, EFw,n] and _A_ if the concepts previously developed

were to be used. This analysis is made in the following manner:

Since

and

or

Z_p(_,_?) = ACp = - _ (87)
q U

r = - 9/(_) d_

0

(88)

rn=-C _,(_) d(_)= -C_,av(_n,y)A(c _) (98)
1

C

c A(_/c) \U ] (99)

IF' n_ FG---__ (100)

and

ACp(xn,r/) ,z =

and from equations (41) and (95)
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If the (ZXCp) are taken to be averagevalues rather than to be modeshapes,then an

equivalence results:

Hence

2 , I-n
_A_ _c ZX(_/c) _-_n) = _Fw,n_ (4-_ (101)

EA_( 2-) EA_ 1 _F' n_ (102)ca( /c) = w,

The actual evaluation can be done, therefore, _ w,in terms of F' n , or this matrix can

become our new [A3 matrix. It is used by rewriting equation (48) as

1 F'
(AF)F = [_--_ _ w,n _ - qES3EB'_]-IEs3 (R) (103)

IV - STRUCTURAL ANALYSES

Some of the structural analyses currently employed to develop structural influence-

coefficient matrices are slender-beam, plate (and shell), and finite-element methods.

Each of these methods has its applicability both to configuration shape and to the time at

which it is employed in the design cycle. The slender-beam analysis is usually applied

at the preliminary design stage to wings which have a beamlike structure. The plate

method is used for wings which do not have an elastic axis that is essentially or piece-

wise straight, but have instead sets of node lines associated with each fundamental mode

due to both bending and torsional loadings. This method is applied to delta and delta-like

wings of low aspect ratio in the preliminary design cycle. The finite-element method is

most often used in the final design cycle and incorporates the stiffness effects of the indi-

vidual pieces such as cover plates, ribs, webs, and so forth.

Slender-Beam Method

From figure 19 it can be seen that a unit upward force applied at some point (_j,r/j)
on a wing with an elastic axis is resolvable into a unit upward force perpendicular to and

a coupled force along the elastic axis. Each of these forces produces a streamwise change

in the slope at point (xi,Yi). The slope change which occurs at point (xi,Yi) due to the

upward bending of the elastic axis is represented by a vector perpendicular to the elastic

axis and can be determined from the basic differential equation of a beam, namely,

dOB(x'Y) M
- (104)

d_- El
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by integrating along the elastic axis. Multiplying this resmt by sin Aea yields the

streamwise slope component which is what we need.

The slope change at point(xi,Yi)which results from the couple (or torque) is repre-

sented by a vector parallel to the elasticaxis and can be determined from a basic differ-

entialequation, namely,

d0T(x,Y) T

d_ GJ

by integratingalong the elasticaxis. Multiplying thisresult by

streamwise slope component which is that needed.

For loading point ahead of the elastic axis:

(105)

cos Aea yieldsthe

Putting this together leads to:

sij: s(xi,yi;_j,nj)=

For loading point behind the elastic axis:

(106a)

sij = s(xi,yi; _j,n]) =

where

u

-_'0 \

m

cos Aead_ _

(106b)

_y = sin Aea(X o - xi) + cos Aea(Y 0 - Yi)

_r} = sin Aea(X o - _j) + cos nea(Y o - T/j)

d = _(_j - h) 2 + (_j - nl) 2 (109)

_I = Xo - _r/sin Aea (II0)

7/I- Yo - _7}cos Aea (III)

and Xo,Yo is defined in figure 19. A positive slope change is a positive angle-of-attack

change. (See ref. 1, pp. 43 to 49 for a similar development.)
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Plate Methods

The structural slope matrix for wings which behave like plates can be solved for by

several different procedures. Two of these procedures are (1) finding the mode shape

and frequencies and using them in conjunction with a generalized force which results from

a unit load and finding the sum of the mode shapes at each slope point and (2) using the

principle of minimum potential energy in the manner of Rayleigh-Ritz. (See ref. 1, p. 50.)

Mode-shape procedure.- In the mode-shape procedure, the mode shape and fre-

quencies of the plate-like structure must first be determined. One method for determining

these is given in reference 16 where it begins with Lagrange's equation for the undamped,

unforced system as given below:

df 0,
_k'_k) "_k = 0 (112)

where

L = T (kinetic energy) - U (strain energy) (113)

and qk are generalized coordinates. Let the generalized coordinates qk be replaced

by discrete vertical displacements z i of the plate from the reference surface and the

differentiation by a finite-difference scheme and the surface integrations for T and

be performed by the trapezoidal rule. This procedure leads to:

E,,,i] + -0 c,,,,)
where _m_ is the mass matrix and EK] is a stiffness matrix. For

z i = _,ielwit (115)

there results

Then, solving

2
o_i .yields the eigenvectors (mode shapes) _'i and the eigenvalues (frequencies)

Any arbitrary deflection shape can be approximated by the linear combination of a

complete set of orthogonal functions with appropriate coefficients. The mode shapes are

such an orthogonal set of functions. (See description of solution to modal approach previ-

ously presented in Dr. Yates' report as an example of this procedure.) However_ although

a complete set may not always be obtained when a modal analysis is performed, enough

mode shapes are usually determined for the present analysis. Proceed by writing
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where

Z (,,8)

qj = qj(t) = qjeiWj t (119)

Use of equation (31) is also needed with the generalized force retained, thusly,

Mj_j(t) + w_Mjqj(t) = Qj(t)

For the case of no acceleration (steady motion), then,

(120)

Qj

qj(t) = _Mj
(121)

If Qj is considered to be the generalized force based on a unit concentrated load placed

at, say, the kth loading point, then the set of qj(t) which are associated with that loading

point in each of the j modes can be found. Repeating this procedure for each loading

point allows the deflections at each slope point due to a unit load at each of the loading

points to be found by making use of equation (118). After the deflections are determined,

then, by differentiating chordwise (using finite difference techniques), the structural

slope matrix [S_ can be formed.

An example of this procedure is given in reference l (pp. 94-95) for a beam whose

mode shapes and frequencies are known.

Rayleigh-Ritz method.- A Rayleigh-Ritz approach may be used in conjunction with

the principle of minimum potential energy in the following way:

First, define the Rayleigh-Ritz approach as being based upon the assumption that

the unknown displacement shape (surface deflections) can be approximated by chosen

deflection-mode functions, each of which satisfies the physical boundary conditions. The

coefficients of the deflection-mode functions become the unknowns of the problem. (See

preceding discussion.) For present purposes, the deflection-mode functions are chosen

to be a power series in the x-direction with the coefficients being functions of the

y-direction.
N

- _" m.(v_uJ (122)

j=0

Second, determine the total system potential energy by combining the strain energy

in the plate due to internal deformations with the energy gained from a unit concentrated

load acting at a loading point. If each of these functions is recognized to be a surface

integral, write the foregoing relations as, simply,
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m

U = U + _ (123)

Third, employing the principle that the potential energy should be a minimum with

respect to each _j(y) in order that the plate may be in equilibrium yields

_U
= 0 (124)

0 j(y)

This operation can be applied for each q_j(y) and from this result, N simultaneous

equations can be formed, and a solution for the qSj(y) terms can be made.

Fourth, equation (118) can be used to determine the deflections, and differentiating

gives the slope at each slope point due to a unit concentrated load at the loading point.

Fifth, moving the unit concentrated load to every loading point over the wing and

repeating the second, third, and fourth steps yields the structural slope matrix ES_.

Chordwise deflection shapes constrained to be either linear or parabolic as well as

one shape which was developed from using all of the structural mode shapes available can

be seen in figure 20. Solutions for plates having linear and parabolic chordwise deflection

shapes are given in references 17 and 18. The effect of constraining the chord shape to a

simple functional form is to introduce artificial stiffness into the system which can lead

to poor results. This is shown later.

Finite-Element Method

ES_ for a built-up structure can be handled in a manner likeThe determination of

that described in the Rayleigh-Ritz method except that instead of only the strain energy

for a plate being used, the strain energies for cover plates, spars, ribs, etc., are also

included. (See fig. 21 for a sketch of a built-up wing structure.) Solutions for _j(y) are
given in reference 19 for linear and parabolic chordwise camber deflection shapes.

Example

Applying plate theory to the wing shown in figure 22 and allowing the chordwise

deflection shapes to take on the three forms described previously permits determination

of three different structural slope matrices. When each of these three representatives

are used in the force-slope method with the same aerodynamic influence coefficient

matrix, the pressure-coefficient results (fig. 22), the flexible-to-rigid CL_ results

(fig. 5), and the movement of the aerodynamic center on the flexible wing (fig. 4) can be

determined. These data show how the artificial stiffening, mentioned earlier, leads to a

loss of accuracy in the results obtained, and gives answers which appear to be at least

quantitatively as initially expected.
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SummaryRemarks onPart IV

Three methods of analysis, slender beam, plate, and finite element, have been out-

lined and some details given concerning their use in developing a structural slope matrix.

Plate theory has been applied to a sample wing and the effects on accuracy in the form of

constraining the chordwise deflection shape have been shown.
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Figure 12.- Resolution of aerodynamic-

force coefficient into components.
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Figure 20.- Chordwise results from structural constraints.
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. RESPONSE OF FLEXIBLE AIRPLANES TO ATMOSPHERIC TURBULENCE

By Kermit G. Pratt

Langley Research Center

ABSTRACT

Current random-process-theory methods for the estimation of the theoreticalaver-

age frequency of exceeding peak responses (particularlyloads) of various levels are

described, and calculated results are compared with resuRs from flightmeasurements.

Contents include (1)the statisticalcharacteristics of the airplane responses and of the

turbulence velocities,(2)the relationshipof these characteristics in terms of power spec-

traldensity (PSI))functions and frequency responses to a sinusoidal gust fieldof various

wavelengths, (3)the relation of PSD functionsto random time functions and to statistical

parameters, (4)methods of calculatingfrequency responses and aerodynamic forces due

to gusts, and (5)the synthesis of the responses experienced during routine flight

operations.

INTRODUCTION

From the first days of aviation, airplane pilots and passengers have been jostled

and shaken, and the airplane structures have been loaded by frequent disturbances during

flight. Early airplane travelers spoke of "bumps" caused by "air pockets," but people

with technical backgrounds were aware that the disturbances felt were varying accelera-

tions of the airplane in response to the turbulent motion of the atmosphere.

Turbulence is caused principally by wind shears and by convective action as in

cumulus clouds and thunderstorms. The turbulent air moves with varying speeds and

directions; the velocity fluctuations that noticeably disturb an airplane are called gusts.

In fact, gusts and turbulence are often used synonymously.

The fundamental link between the airplane disturbances or responses and the turbu-

lence velocities is the change in angle of attack (or sideslip) induced by the turbulence

velocity in conjunction with the forward speed of the airplane. This relationship is indi-

cated in figure 1 in which an airplane, which is shown flying from right to left, encounters

a portion of turbulence with a vertical velocity component labeled Wg. The vector dia-

gram describes the angle of attack on the lifting surface ag, which ru_ult_ zxuzzz uz_ _v,,,-

bination of Wg and the flight velocity V. This angle of attack, of course, produces an

aerodynamic force, called a gust force, which in turn causes the airplane to accelerate.

Concurrently, there is an angle of attack due to the disturbed motion of the airplane, and
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consequentlyanother aerodynamicforce exists that modifies the airplane acceleration.
These relations will be examinedin much more detail subsequently.

The airplane responsesto turbulence generally adversely affect the airworthiness
of the airplane and havebeenconsideredin design throughoutalmost the entire history of
aviation. The evolution of the airplane with regard to increased speed,size, weight, and
improved structural efficiency with attendantincrease in flexibility has aggravatedthe
adverse effects and at the same time has increased the complexity of design procedures.

SYMBOLS

A_,An

Az

an

gust sensitivity factor for bending moment and load factor, respectively

gust sensitivity factor for any response quantity z, az/awg

normal acceleration

B,C constants

distance of flight

di

do

distance of flight in turbulence of intensity

distance of flight in smooth air

 i(i:i,n,m)

dT total distance of flight

dl flight distance in nonstorm conditions

d2 flight distance in storm conditions

EI structural stiffness

e

F

base of natural system of logarithms, 2.71828

force

F(t),f(t)

frequency (1 cycle per second = 1 hertz)

random time functions
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f(t+ T)

Gz(t)

random time funcUon displaced by time lag

Fourier transform

response to step gust

Gz(t - T)

g

H(f) ,H(¢o)

response to step gust displaced by time lag

acceleration of gravity, 32.2 ft/sec 2 (9.81 m/sec2)

frequency response functions, with accompanying subscript denoting specific

type of response

h

hz( )

pressure altitude

/

response to impulse gust (for example,

\

aerodynamic influence function

hz(t) =
dGz(t_

i,j mode designations

K

k !

kernel function in integral equation

wave number or reduced frequency, wL/V

L scale of turbulence; lift force

Lg

L_

lift due to gust velocity

steady-state lift

M

M

Mach number

bending moment

Mii

Mij

generalized mass of ith mode

generalized mass of ith and jth modes
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m mass per unit area; meanvalue; particular "box" in Machbox method

N

N(z)

NO

NT(Z)

n

Pl

P2

P

Pg

Pi ,Pj

P,Pg,Pi,Pj

p(z)

P(_) ,P((_i)

Qig

Qij

q

R(T)

average frequency of exceeding response peak of a given level

average frequency of exceeding response peak of level z

average frequency of crossing zero level with positive slope

N(z) for total design mission

load factor; number of modes; number of "boxes" into which the wing is

divided in Mach box method

probability of experiencing "nonstorm" turbulence

probability of experiencing "storm" turbulence

pressure on lifting surface

p due to gust field

p due to motion in ith mode and jth mode, respectively

amplitude of sinusoidal variation in p, pg, Pi, and pj, respectively

probability density of quantity z

continuous and discrete probability densities, respectively

generalized aerodynamic force on mode i due to gust

generalized aerodynamic force on mode i due to motion in mode

dynamic pressure, p V 2

autocorrelation function

Rwg(_),Rz(r) autocorrelation function of Wg and z, respectively
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S area of airplane in XY-plane

T

Ug,Vg,Wg

V

Ve

Vmin

W

Wg

wj

X,Y

X

Y

zi,z j

upper limit of time integration

time

turbulence velocity components in direction of flight, in spanwise direction,

and in vertical direction, respectively

flight velocity; airspeed

equivalent airspeed, Vp/_P_

stalling speed

airplane weight

amplitude of sinusoidal variation in gust downwash Wg

downwash due to motion in jth mode

airplane axes

distance from airplane reference point in fore and aft direction

distance of airplane reference point from earth-fixed reference point in

direction of flight

distance of point on airplane from earth-fixed reference point in direction

of flight

distance along surface span

wing semispan station, measured in fractions of a semispan

response quantity; vertical distance from undisturbed flight path

generalized coordinate for ith mode and jth mode, respectively
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zi zi for sinusoidal gust velocity

c_ angle of attack

due to vertical gust velocity only

ratio of damping to critical damping

first-mode damping ratio for conditions I and H, respectively, in figure 24

gust wavelength

,_? dummy variables

_i(x,y),_j(x,y) shape of ith mode of motion and jth mode of motion, respectively

p mass density of air

Po value of p at sea level

a root-mean-square (rms) value

ac,1

ac,2

af

aUg,aVg,aWg,aZ

a 1

rms intensity of composite nonstorm turbulence velocity

rms intensity of composite storm turbulence velocity

T

rms value of function f(t)

total rms value

rms value of Ug, Vg, Wg, and response z, respectively

truncated rms value of turbulence velocity obtained from power spectrum of

measured turbulence (al,ug , al,ug , and al,wg are truncated rms values

for longitudinal, lateral, and vertical components, respectively)

time lag in autocorrelation function
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_(k')

¢(co)

CWg(co)

CzCco)

CO

col

¢0 n

power spectral density function Cpower spectrum) for argument f and

respectively, with accompanying subscript indicating specific type of

spectrum

power spectrum for argument k'

power spectrum for argument _2

Fourier transform of

Fourier transform of

Fourier transform of

spatial circular frequency,

Rwg(V)

RzC )

co/V

circular frequency

natural circular frequency of ith vibration mode

natural circular frequency

ADVERSE RESPONSES

CO_

Some current problems associated with turbulence responses are discussed in this

section.

Loads and Stresses

Single extreme load.- A single extreme load may lead to failure of some vital part

of the airframe structure. It is often critical for airplanes having a low design maneuver

load factor such as airline transports. For these airplanes, the wing structure often

must be designed for response to the vertical turbulence velocity component. The verti-

cal tail structure is often designed for response to the lateral turbulence velocity. Criti-

cal load conditions are associated with high turbulence intensities. The material herein

is concerned almost exclusively with this particular adverse response.

Fatigue damage.- Cracking of structural elements is a cumulative effect of all

stress variations - small variations as well as large. No rational approach to damage

prediction exists. Control is based largely on empirical procedures and inspection.

Research toward a better understanding of the problem is continuing.
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Motions andDeformations

Loss of control and upsets.- A number of accidents and near-accidents believed to

have been caused by very high intensity turbulence have been experienced. In some cases

the airplane dived into the ground; in others, the structure may have been overloaded by

the maneuver resulting from an attempt to recover.

Excessive motion.- Large angular or rectilinear displacements are detrimental to

precision flying operations such as aerial photography, refueling, and landing.

Physiological effects on pilots and passengers.- Loss of human performance effec-

tiveness due to excessive shaking and vibration may contribute to loss of control; the

pilot may be unable to read instruments or move precisely. Effects of motion on the

passengers range from minor problems such as spilled coffee to major injuries such as

serious contusions and broken bones if seat belts are not used.

SUBJECT AREAS INVOLVED IN TURBULENCE RESPONSE ANALYSIS

Because of the many problems associated with airplane responses to turbulence,

there is a considerable interest in methods of predicting the responses and of designing

for their effects. A description of some of these methods is the purpose of the present

paper. Emphasis herein is placed on the description of the most modern methods of

estimating the responses to turbulence experienced by an airplane of a given type during

its entire period of operation. Such information is required to establish the airworthiness

of any particular airplane design.

Turbulence response analysis is especially interesting because of the variety of

subjects that must be considered in the methods of analysis and synthesis that are applied.

The primary subject areas are the following:

(1) Dynamics of flexible bodies

(2) Aerodynamics of unsteady flow

(3) Stability and automatic control

(4) Loads

(5) Structures

(6) Statistics

(7) Random-process theory

(8) Turbulence theory

(9) Fatigue of materials
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(10) Flight operations andmissions

(11) Flight testing andinstrumentation

(12) Mathematical techniques (Laplace and Fourier transforms; numerical methods)

With a few exceptionseachof these subjects is a major discipline in itself. The
structural-dynamics specialist working on turbulence responseproblems neednot be an
expert in eachof these disciplines, but he must knowhowto combinepertinent informa-
tion from eachof them andhe must have contacts with authorities in these subject areas
in order to obtain this information.

For the purposeof following the material in this paper, it is helpful to have some
knowledgeof the dynamicsof flexible bodies (Lagrange's equation),aerodynamics of
unsteadyflow, structures, statistics, and mathematical techniquesincluding Laplace and
Fourier transforms. Knowledgeof the remaining subjects is not a prerequisite.

Random-process theory is a fundamentalpart of the determination of turbulence
responseand is a large subject in itself. The elementsof random-process theory are
described herein. However, the presentation covers only the bare essentials and could
lead to an oversimplified impression. The reader is urged, therefore, to study the
appropriate reference literature in order to pursuethe subject further.

The theory of turbulence is also a large field of study. Little more thana mention
of its existence anda presentation of results that are essential to the present subject is
included herein.

CHARACTERISTICS OF AIRPLANE RESPONSES TO TURBULENCE

In describing an analytical framework which relates the airplane responses (such

as acceleration, stress, and attitude angle) to the atmospheric turbulence, the character-

istics of the airplane responses are examined first. The particular response to be con-

sidered is the normal or vertical acceleration at the airplane center of gravity. This

response is chosen as an example because for many airplanes that are relatively stiff,

the load or stress in the structure is essentially proportional to the normal acceleration

at the center of gravity. Relatively stiff means that the frequency of the lowest natural

vibration mode of the structure is more than five times the frequency of the short-period

longitudinal stability mode.

Some characteristics of acceleration at the airplane center of gravity for a repre-

sentative routine airline flight are shown in figure 2. This figure illustrates a record

from a VGH recorder; a VGH recorder provides measurements of equivalent airspeed

Ve, pressure altitude h, and normal acceleration a n in gravitational units g (all as

time functions or time histories). The total record is many hours long and covers many
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flights. The particular flight shown is of about 30 minutes duration. The main thing to

concentrate on in this figure is the acceleration response an and, in particular, those

sections labeled gust acceleration. These disturbances arise from flight in turbulence,

and the principal characteristic to be noted is that the gust accelerations are intermittent

and vary in intensity.

A portion of a gust-acceleration time history is shown in greater detail in figure 3.

This record includes the wing-root bending strain as well as the normal acceleration at

the center of gravity (c.g.) and was taken from special flight-test instrumentation rather

than from the VGH recorder with its relatively cramped time scale. The total record

time shown is only 15 seconds.

Statistical Description

The point of figure 3 is that the acceleration and the strain are both random func-

tions of time. The particular variation in the future is not known or predictable. Because

it is random, it must be described in terms of statistical parameters such as the mean

value, the root-mean-square value, and the probability-density distribution.

Because the adverse response being considered is the single extreme load, still

another statistical parameter is important - the average number of times per flight hour

or nautical mile that a peak acceleration response is exceeded. As suggested by the

random time history in figure 3, one would expect a higher frequency of exceeding peaks

of lower levels than peaks of higher levels. This expectation is indicated quantitatively

in figure 4.

The definition of a response peak is indicated by the trace sketched as an inset in

figure 4. The log scale on the ordinate of the main plot is the average frequency per

flight n. mi. of exceeding normal-acceleration peaks having values indicated by the linear

scale on the abscissa. Incremental acceleration means variation from a level flight

response of ig. The data are for a fleet of two-engine turboprop airplanes, were read

from a number of VGH records, and represent several thousand hours of flight.

According to this plot the airplane will fly an average of 5000 n. mi. between peaks of Ig

and an average of a half million n. mi. between peaks of 2.0g.

Risk

The presentation in figure 4 contains the important implication that there may not

be any practical upper limit of load that may be experienced. Of course, common sense

says that infinite load levels are not expected, but the word practical means that an ele-

ment of risk in setting design load levels must be considered. The concept of accepting

a definite risk of failure is an unsettling idea to some people. However, these same
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people accept a certain risk of disaster every time they get up in the morning but they

do not acknowledge it.

In this case the risk is faced by choosing a level that is equal to or lower than those

from other sources. A risk level is chosen that results in a mean time between critical

occurrences that is somewhat greater than the planned life of the vehicle; in other words,

the airplane would be expected to be retired from service for obsolescence in less time

than the mean failure period. The risk can be reduced further by utilizing methods of

avoiding turbulence by radar detection of storms and by dispatching flights around them.

Critical Loads

Whether or not the structure must be designed for the loads due to turbulence

depends on the type of airplane - that is, the service it is to provide. For example, a

military fighter or interceptor airplane must make abrupt maneuvers in its missions and

consequently may be designed to withstand as great a load factor as its human pilot can

tolerate, say 6 or 8. The maneuver load factor is usually very high in comparison with

the load due to turbulence at a reasonably low risk level. The turbulence or gust loading

is then noncritical in this case. This relationship is indicated in figure 5, which is a V-n

diagram; that is, load factor n is indicated by the ordinate and airspeed V, by the

abscissa. The lowest speed or stalling speed is denoted Vmi n. The curved portion is

load limited by stall. The top line is the maneuver load level set by the airplane usage.

This level may be as high as 6 or 8 for a highly maneuverable airplane. Loads due to

turbulence at an acceptably low risk level would fall below the maneuver load maximum

level and therefore would not be critical.

On the other hand, the maneuver load factor for transport airplanes, because they

need not maneuver abruptly (in fact, passengers would object to it), is much lower than

for acrobatic-type airplanes; a typical maneuver load factor for transport airplanes is

2.5. For many of these transport airplanes the load due to turbulence at an acceptable

risk level is greater than the maneuver load factor; the airplane is called "gust critical"

and extra material must be added to the structure to withstand the gust loads.

Some oversimplification was made in presenting the V-n diagram. It is precisely

appropriate only for an airplane that is essentially rigid - that is, whose structure is

characterized by weakly excited, moderately to well damped elastic modes having fre-

nfllOnelo._ of at least five to !0 times the frequency of the ._bnrt-poriod mode. F×amp!_.q

of rigid airplanes include most small general-aviation planes and small jet-propelled

transports. For these airplanes the structural stresses are essentially proportional to

the normal acceleration at the center of gravity, and thus acceleration at the center of

gravity is a suitable index of load.
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However, larger airplanes usually havereadily excited, poorly dampedelastic
modes,somewith natural frequencies near the frequency of the short-period mode. For
theseairplanes the dynamic deformations of the elastic modes create a dynamic stress
increment that results in increased loads. The stress responsesof these airplanes must
be consideredfor a number of locations on the structure. The choice and number of these

locations is largely determined by the designer's experience.

Of course, whenan airplane design is on the drawing board, initially, it is not known
whethergust loads are critical, so engineeringstudies haveto be madeto determine the
responsecharacteristics. This determination amountsto predicting or synthesizing the
exceedancecurve shownin figure 4. A description of the developmentof a methodof
synthesis is the ultimate objective of the present study.

CHARACTERISTICSOF TURBULENCE

The source of the responses - atmospheric turbulence - is described in this sec-
tion. Somesample time histories of the vertical componentof turbulence velocity mea-
sured by an instrumented airplane for several different atmospheric conditions are shown
in figure 6. The sample time period is a little less than2 minutes.

As might be expectedfrom the responsecharacteristics, the time histories of tur-
bulencevelocities are random functions. It is obvious that intensity in terms of root-
mean-squarevalue a is subject to large variations. It is also obvious that somewild
variations in vertical velocity are encounteredin a thunderstorm, as indicated by a maxi-
mum positive value of over 160ft/sec (48.8m/sec) and a maximum negativevalue of
more than -100 ft/sec (-30.5 m/sec). It shouldbe noted,however, that this variation
takes place over a period of some20 seconds. The airplane has considerable time to
adjust to the velocity variation, and consequentlythe accompanyingvariations in acceler-
ation, thoughnot shown,are relatively low comparedwith those of the turbulence velocity.

As can be inferred from the characteristics of acceleration response, turbulence
over wholeflights is intermittent andvariable in intensity and, in general, must be
described in terms of the probability density of intensity. Additional statistical quanti-
ties describing the characteristics of relatively short samples of turbulence (say, from
15to 50n. mi. in length) are significant in the calculation of airplane responses to tur-
bulence. These quantities are indicated in figure 7 andare discussednext.

Statistical Properties of Short Samplesof Turbulence Velocities

Stationarity.- The property of stationarity is illustrated in the upper left part of
figure 7. If the time averages of a sample random time function for a componentof
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turbulence experiencedby an airplane are independentof the starting time of the sample,
the sample is regarded as stationary. In the exampleof stationarity in figure 7, the

root-mean=square value of the sample starting at time tl and ending at t2 is equal to

that starting at t2 and ending at t 3 and also equal to that for the total sample from t 1

to t 3.

Homogeneity.- Another statistical property (not illustrated) is homogeneity, which

is manifested as the invariance of the time average of any function of a turbulence veloc-

ity component as measured during flight in any direction.

Isotropy.= The property of isotropy is indicated in the upper right part of figure 7.

In flight through turbulence, isotropy is indicated by the time average of any function of

the velocity components (or their derivatives) being independent of the orientation of the

reference axes. The example given in figure 7 is the equality of the root=mean-square

values of the three orthogonal velocity components aWg , aVg , and aUg.

Probability density.- The probability density for turbulence velocity components

has been found empirically to be nearly Gaussian or normal, as shown by the familiar

bell=shaped curve at the lower left in figure 7.

Ergodicity.- Finally, the turbulence is considered to be an ergodic process; that is,

time and ensemble averages are taken to be equal. The concept of ensemble averages is

basic in statistical analysis, and an ensemble is illustrated in figure 8 by a series of

time=function samples of a stationary random process. The ensemble average is taken

at a particular instant of time, say tl, over an infinite or at least a very large number

of members of the ensemble. In order to apply statistical theory to a single time func=

+_"'......,_+..._° ncccssary to invoke the property of ergodicity; that is, the time average is

equal to the ensemble average. Ergodicity is possible only if the process is stationary
in time.

Space and Time Variation

The samples of turbulence velocity have been shown as time functions. The air-

plane, of course, is traversing space during flight and so, in general, turbulence must be

regarded as varying with space at a given "_*-_1,,o_,t,,t and varying with time at a given spatial
location.

The significance of these variations is indicated in the following sketch, in which

the variation of the vertical component of turbulence along the direction of flight at the

center line of the airplane is considered:

Tail
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As far as the airplane is concerned, the variation of turbulence with time is only impor-

tant during the time that it takes the airplane to travel its own length. If the pattern of

turbulence were to change appreciably during this time, then, for example, the tail would

experience a somewhat different turbulence velocity than the wing as indicated by the

solid and dashed lines above the tail, and this time effect would have to be accounted for.

The time increment for most airplanes, however, is on the order of a fraction of a

second, and measurements indicate that the turbulence pattern does not change apprecia-

bly in that time. As a result, the turbulence velocity pattern is assumed to be frozen in

space, a concept known as Taylor's hypothesis. On this basis, time as used in the time

histories is related to distance by the speed of the airplane. However, Taylor's hypothesis

should be used with care for gust responses of V/STOL airplanes, particularly in the near-

hovering mode because the significant time increment may then be large enough for appre-

ciable time changes in the turbulence to occur.

Turbulence in short samples has been found to be essentially homogeneous, and

therefore with respect to the axes of an airplane in level flight, the turbulence velocities

would be expected to vary along the span of the airplane as well as along the direction of

flight. A model of such a turbulence field for the vertical component is illustrated in

figure 9 by the sketch of a two-dimensional gust field. This artist's concept is somewhat

misleading for two reasons: (1) the variation along the X-axis appears to be much more

rapid than that along the Y-axis and (2) the size of the airplane in comparison with the

wavelengths of the turbulence is much too large.

Actually, for all but the very largest airplanes, the variation of the turbulence over

the span of the airplane is relatively small, and the simpler model illustrated in figure 9

by the upper sketch for a one-dimensional gust field appears to be adequate for most

response calculations. Currently at Langley and elsewhere, research is being conducted

on the effects of the two-dimensional model on large airplanes at low altitudes. However,

for the remainder of this presentation, the turbulence field will be considered as the one-

dimensional model.

INPUT- OUTPUT RE LATION

Random-Process Theory

Some of the statistical properties of the turbulence and of the airplane response

have been described. The subject to be considered next is how to relate them. This

relation obviously must involve the dynamic characteristics of the airplane. Efforts to

obtain a practicable general relation solely on the basis of random time functions have

not been successful. As in the treatment of many other problems, it has proven to be

more expeditious to transform the problem into the frequency domain by Fourier

452



transformations. Onthis basis a powerful method for determining the properties of the

responses of systems to random disturbances was originated by Norbert Wiener and con-

tributed to by S. O. Rice, John W. Tukey, and others (see bibliography of ref. 1). This

method is known as random-process theory. Investigators who initially applied random-

process theory to the response of airplanes to turbulence include Gerhardt C. Clementson,

H. W. Liepmann, and Harry Press. Reports on these and later applications are also

listed in the extensive bibliography of reference 1.

In its present state of development, random-process theory provides a relatively

simple relation between the statistics for the responses of a linear system and those for

the short samples of turbulence that have been previously described in terms of station-

arity, homogeneity, isotropy, normality (Gaussian probability), ergodicity, and the one-

dimensional turbulence field. (This relation is not sufficient to describe the airplane

responses for extended flights in turbulence of intermittent occurrence and variable

intensity. However, a method of utilizing the relation for this purpose is described in a

subsequent section.) An outstanding feature of random-process theory is that a statisti-

cal description of the response to turbulence velocities can be deduced without actually

considering the random time function.

Power spectrum.- A basic concept in random-process theory is a function of fre-

quency ¢(0)) that contains all the statistical information describing a Gaussian process,

including, for example, N (the average frequency of exceeding a response peak of a

given level). The function _(0)) is called a power spectral density function or, in short,

a power spectrum. The nature of a power spectrum is indicated by the example in the

following sketch:

Area - a2

v 0)

,%o) Wl

This power spectrum of simple shape is an approximate white-noise or constant-

amplitude spectrum that arises, for example, from the discrete electron flow in a vacuum
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tube. White noise refers to the equal contributions from all frequency increments Aw

(at least up to Wl) to the mean-square value which is equal to the area under the curve.

In mathematical notation

oO

a2 = _0 _Cw)dw (I)

This equation illustrates the relation of the power spectrum to one statistical quantity,

the mean-square value. The spectrum, therefore, might more appropriately be called a

mean-square spectrum. The term power spectrum is indicative of the subject from

which it evolved - namely, electrical-circuit theory.

Equation (1) also indicates that the power spectrum is a density function with

respect to frequency; that is, the units are quantity-squared per unit frequency. There-

fore, if the frequency argument and its units are changed, then the spectrum is function-

ally changed; for example,

4_(f) = 2_(w) (2)

so if _(w) - B then
C + w2'

=
2yB

C + (2_f)2

A further indication of the nature of a power spectrum can be obtained from the fol-

lowing block diagram of an analog circuit:

Random _ Narrow _ Squaring I f2(t) IAveraging I af2 1 1----_ af2time FCt) band _-_ circuitfunction filter circuit _[ Aw ! A¢_

,/

Filter
response to
sinusoidal

input
J
i

Wl

Aw << w 1
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The output of the block diagram is proportional to the value of the power spectrum

at frequency w 1. Variation of the filter frequency w 1 over a range from zero to very

high frequencies would then result in a function of frequency proportional to the power

spectrum.

Relation of output to input in random-process theory.- The power spectrum for a

random response z (that is, _z(_)) can be expressed as the product of a power spec-

trum for an input disturbance (that is, _i(0))) and the square of the amplitude of the

response z to a unit sinusoidal input disturbance I (that is, IHz(w)l 2) over a range

#

of frequencies from zero to large values for which there is an appreciable response. In

equation form

_z(W) = _I(_)IHz(_)I 2 (3)

The response Hz(w ) is commonly known as the frequency response function and

the concept is familiar to those interested in the fidelity of amplifiers in a high-quality

sound reproduction system. For those not familiar with this concept, an example of a

frequency response function from the subject of mechanical vibrations is presented in

figure 10; IHz(w)[ is the amplitude of the oscillatory displacement of a mass-spring-

dashpot one-degree-of-freedom system due to a unit sinusoidal applied force.

A graphical illustration of the input-output relation for random disturbance is

shown in figure 11. On the left is a power spectrum of a random input force - a low-

pass white-noise spectrum. This input power spectrum is multiplied by the square of

the modulus of the mechanical-system frequency response, and the result is the output

power spectrum on the right. The output power spectrum in this example looks like the

system frequency response (modulus squared) because the input spectrum is essentially

constant over the frequency r_nge of significant response.

Relation of power spectrum to statistical parameters.- It has been stated previously

herein that the integral of the power spectrum is equal to the mean-square value. Other

statistical parameters can be determined from the power spectrum of a Gaussian process.

One which has already been indicated as particularly pertinent to the single-extreme-load

condition is the average frequency of exceeding a response peak of a given level. The

average frequency of exceeding a response peak of level z (in terms of the power spec-

trum of z) is

z2

2% 2
N(z) = N0,z e (4)
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where

and

~  1/2

co2_z(co)dw_[ C5)

az2 = _zico)dw (6)

Note that N O is the average frequency of crossing the zero level with positive slope and

is proportional to the radius of gyration of the power spectrum about the axis w = 0.

The expression for Niz) is an exact description of the average frequency of crossing a

level z, and for values of z greater than about 2az, the expression is a useful approx-

imation of the average frequency of exceeding response peaks of level z. The equations

for Niz) and N O were derived by S. O. Rice in reference 2. This derivation is some-

what involved and therefore is not presented herein.

Relation of Power Spectrum to Random Time Function

The relation of the power spectrum to the random time function is described in fig-

ure 12. The power spectrum is proportional to the Fourier transform of a statistical

average called an autocorrelation function. The autocorrelation function Ri 7) in turn

is determined from the random time function, as indicated by the sketch and the equationr

in figure 12; R(_') is the average of the product of the time function fit) and the time

function displaced by a time lag fit + _). One of the important features of the autocor-

relation function is that the value for zero lag is the mean-square value. Other proper-

ties of the autocorrelation function can be observed from the example given in figure 13.

This function is symmetrical with respect to r = 0 and decays in amplitude with

increasing values of I_1, as indicated in the upper sketch. The particular function showl

is similar to the form sin coT/coT. The associated power spectrum obtained by the

Fourier transformation is shown in the lower sketch. In general, it too is symmetrical

(about the axis co = 0).

Derivation of Power Spectral Input-Output Relation

The input-output relation has been simply stated. In this section derivations are

presented for the relation, starting with the random variation of a component of turbu-

lence velocity with time wgit).

In the example to follow and in other material to be presented subsequently, con-

sideration is given to the responses to the vertical component of turbulence. However,
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responses to the other components, particularly the lateral component, should be con-

sidered. Generally, the procedures developed for the vertical turbulence component are

applicable to the other components.

The following derivation is based on a fundamental assumption that the airplane is

a linear system; that is, the responses are directly proportional to the turbulence veloc-

ity. This assumption has been found to be valid for many airplane problems. The lin-

earity of the system permits a response z(t) to a random variation of turbulence or

gust velocity Wg(t) to be expressed by the superposition of the responses to step gusts

Gz(t). The step gust Wg(t) and response Gz(t) are indicated in the sketch below:

Wg(t)

_L

%(t)

The response z(t) to a random variation of gust velocity with time

by the superposition integral
Wg(t) is described

z(t)= Gz(t T__ dT
dT

It is more convenient to express this integral in terms of the derivative of

dGz(t)

hz(t) - dt

which is the response to an impulse gust. Then

(7)

Gz (t); that is,

(8)

or alternately

oo

z(t) = SO

oO

z(t)= SO

hz(t- V)Wg(T)dT

Wg(t v)hz(v)dv

(9)

(lo)
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The autocorrelation function Rz(T) is defined as

Rz(_- ) = lim 1 f:T- °_ -_ z(t)z(t + _)dt

where, in terms of the superposition integral,

Then

where

where

and

z(t)z(t + _) = _0 hz(_)hz(_})Wg(t - _)Wg(t + T - T/)d_ d_

oo rb oo

Rz(_) = _0 _0 hz(_)hz(_)Rwg(_ + _ - _?)d_dT?

Rwg is the autocorrelation function of Wg.

The Fourier transform of this equation yields

2 (w"
_bz(W)= Hz(W)Hz*(w)_bwg(W) = IHz(w)I qbWg )

Hz*(W ) is the complex conjugate of Hz(W) and where

oo

_bWg(w) = f_oo Rwg (v)e-iwvd_

Hz(W) = f;oc hz(t)e-iWtdt

In terms of the autocorrelation function of response

oo

qbz(C°) = f_oo Rz(_)e-iW_d_"

Z

(11)

(12)

(13)

(14)

(15)

(16)
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The quantity Hz(w ) is the frequency response of airplane response z to a

vertical-gust velocity field that is sinusoidal in the direction of flight and uniform in the

spanwise direction. This gust field is illustrated in figure 14 together with the relation

between frequency f and wavelength k.

(1'7)



The Fourier transforms in the preceding equations --(_bWg(W)

multiplied by a suitable constant in order to be defined as power spectra so that their

integrals will be equal to mean-square values. The constant is determined from the

inverse relations between R(r) and q5(¢o); that is,

However,

SO

but

where _(w)

r = 0 yields

and ¢z(W)) must be

R('r) = _---_Y_L dP(w)eiW_dw (18)

¢(0_)= _(-_)

oo

1 YO dP(w)eiW'rdw (19)RCT) =

_(w)dw (20)R(0) = 02 = _0

is the power spectrum. Combining the last two equations for the condition

_I_(_)= _(_) (21)
7T

The input-output power spectral relation is then

It should be noted that no phase information is involved.

Attention is turned next to the individualterms in the input-output relation and to

analytical expressions for them.

ANALYTICAL EXPRESSIONS FOR TERMS IN INPUT-OUTPUT RELATION

(22)

Power Spectra of Atmospheric Turbulence

An analytical expression for a generalized power spectrum of turbulence has been

developed from the theory of isotropic turbulence. As indicated previously, this theory

is a major discipline in itself. All that can be done herein is to call attention to some

important contributors to the development of the theory and to briefly state some of the

basic concepts. Some important contributors include Osborne Reynolds, G. I. Taylor,
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A. N. Kolmogoroff, W. Heisenberg,Theodorevon K_rm_.n,L. Howarth, G. K. Batchelor,
and HughL. Dryden (see ref. 3). Someof the basic conceptsare as follows:

(1)Definition of correlation tensors for random velocity componentsin three
dimensions

(2) Combination with Navier-Stokes equations

(3) Definition of time averages

(4) Solution of equations for very small and very large values of Reynolds number

(5) Dryden and von K_rm_n power spectra

A particular result of the theoretical work that is important to the subject problem

is the generalized power spectrum for transverse components of turbulence, developed

by von K_rm_n. The analytical expression is given at the top center of figure 15 in non-

dimensional form, involving frequency in the form of a dimensionless wave number k'.

The wave number is defined in figure 15 by an equation, in which the quantity L is the

so-called scale of turbulence in units of distance.

The characteristics of the spectrum are revealed by the log-log plot on the left side

of figure 15. It is to be noted that the spectrum approaches a constant value at low values

of wave number k' and approaches an asymptotic slope of -5/3 at the higher values of

k'. Thus most of the power in the spectrum is contributed by the lower frequencies.

In actual application, values of the scale of turbulence L for the atmosphere must

be considered explicitly. The effects of variations in L are illustrated by the log-log

plot on the right side of figure 15. It is to be noted that the mean-square values of the

several curves are all unity and that the value of L determines the "roll-off" frequency

between the flat and sloping regions of the spectrum. Thus an increasing value of L

reduces the magnitude of the power for frequencies above the roll-off value and increases

the magnitude at the very low frequencies.

Airplane Frequency Responses

The next term to be considered in the input-output relation is the frequency

response function. This quantity is of great importance because it embodies all the

dynamic characteristics of the airplane. Although the procedure for the calculation of

the frequency responses is applicable to the response to any turbulence component, the

symbology used in this section is for a response to the vertical component as an example.

Thus the input gust field is a sinusoidal variation of the vertical component Wg. The

modal method of calculating the airplane frequency responses to a one-dimensional sinus-

oidal gust field is described, and the example considered is response in the classical

longitudinal mode of motion.
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Mathematical model.- The motions and deformations of the airplane are described

by a finite number of rigid-body and elastic modes. The normal displacement is

expressed as

n

z(x,y,t) = _ _i(x,Y)zi(t) (23)

i=l

where z i represents generalized coordinates and _i represents mode shapes including

rigid-body modes (e.g., i = 1,2,3 are modes in which there is freedom in fore and aft

displacement, in plunge (normal displacement), and in pitch, respectively; i = 4,5,. .n

are elastic modes).

Equations of motion.- The relations between the motions and the forces are often

most conveniently derived by the method of Lagrange, which, of course, is based on

kinetic and potential energies and on virtual work from nonconservative forces. The

motion of the airplane is expressed as small perturbations of the mode displacements

and velocities from an equilibrium flight condition such as steady level flight. The

forces and motions are then linearly related as indicated by the equation

where

Mijgi + wi2Miizi + Qij = Qig (i = 1,2,3,. .n; j = 1,2,3,. .n) (24)

zi d2z
= d_" There results an array of equations, one equation for each mode. With

the exception of the terms on the right side, the equations of motion and the generalized

lurcv_ are u,= same as those used in dynamic _tab_]Hy ,nd flutter analysis. However, a

different number of modes may be used than in a gust-response calculation.

Generalized forces.- The coefficients in equation (24) are defined next.

Inertia: The generalized mass Mij is defined by the equation

Mij = SS _i(x'y)_j (x'y)dm (25)

where m is mass per unit area and S is the area of the airplane in the XY-piane.

Often the elastic modes chosen are the natural modes of the airplane, in which case the

inertia terms are simplified by orthogonality between the modes. Then Mij = 0 if

i'_ j, leaving only the generalized masses for each mode.

Stiffness: The generalized stiffness is designated Mii¢oi 2, where w i is the

natural circular frequency of the ith mode.

Aerodynamic force: The generalized aerodynamic force for the ith mode due to

motion in the jth mode is designated Qij. The generalized aerodynamic gust force for
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the ith modeis designated Qig. These two forces are definedby the equations

Qij = _ _i(x,y)Pj(x,y,t) dx dy (26)

where pj is pressure due to the jth mode, and

Qig = _ _i(x,y)Pg(X,y,t) dx dy (27)

where pg is pressure due to the gust field.

Pressure distribution.- Pressure distribution is determined from linearized aero-

dynamic theory for thin planar lifting surfaces. Pressure due to motion in the jth mode

is defined by the equation

pj(x,y,t) = S_ I(x-_,y-T/,t,M)wj(_,7/,t)d_ dT/ (28)
S

where wj is the downwash on the wing surface at a point (4,7/) and I is an aerodynamic

influence function relating pj at a point ix,y) to wj at all other points. The downwash

due to the motion and deformation in the jth mode is expressed in terms of the slope of

the lifting surface and its normal velocity as

wj = _x + _j(x,y)zj(t) (29)

Pressure due to gust is defined by the equation

pg(X,y,t) = J'ff I(x-_,y-rl,t,M)Wg(_,rl,t)d_ drl (3O)
S

The downwash due to the gust field Wg is described in figure 16. The desired quantity

is the gust downwash or gust velocity acting at a chordwise station on the surface at x

referred to an airplane reference point, say a point at the apex of the wing; ff is expressed

in terms of the distance traveled by the airplane Vt in the earth-fixed gust field

Wg = Wge iw_/V. The gust downwash is then

Wg = Wge'iwx/Veiwt (31)

and is illustrated in figure 17. Passage of the lifting surface through the sinusoidal gust

velocity field produces an unsteady flow. One of the features is the penetration of the

gust field by the wing. There is, consequently, a variation of gust downwash along the

chord as indicated in figure 17.
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Unsteady flow.- The effect of gust penetration and also of the wake in unsteady flow

is illustrated in figure 18. The effect of the flow in the wake is common to both gust dis-

turbances and motion of the lifting surface, as already pointed out in the paper by

E. Carson Yates, Jr. In figure 18, Wg has been approximated by a series of step gusts.

A rough indication of the interaction between the flows on the wing and in the wake in a

step gust is given for two-dimensional flow in the sketches at the lower left side of the

figure. In the top sketch the wing has not yet penetrated the step gust. In the second

sketch the forward section is immersed. The clockwise arrow indicates that an incre-

mental increase in circulation has occurred, while the counterclockwise arrow indicates

an equal and opposite circulation concurrent with the first arrow. Thus, the two circula-

tions cancel and there is no net lift on the wing. In the third sketch the wing is immersed

still further. The counterclockwise arrow on the right represents the countervortex gen-

erated in the preceding sketch and remains at the same point in space relative to the gust

front. The matching vortex (not shown) remains bound to the wing. The countervortex

on the right induces a downwash on the wing that is less than the downwash from the bound

vortex, and consequently an increment in lift L is developed. At the same time, as a

result of the additional penetration, another increment in circulation is developed that is

canceled by another countervortex. The bottom sketch indicates conditions after the wing

has been fully immersed in the gust for some distance. The countervortices remain in

the wake where they were shed. There is a circulation about the wing having a strength

equal and opposite to the sum of the strengths of the wake vortices as is specified by the

Kelvin circulation theorem; that is, the total vorticity is zero. Owing to the distances

between the wake vortices and the wing, the downwash from the wake vortices is much

less than that from the wing vortices, and the lift is approaching the steady-state value.

After the wing is fully immersed, the penetration effect is nearly complete and the

remainder of the transient lift buildup is somewhat similar to that accompanying a sud-

den change in angle of attack (Wagner function). The characteristics of the lift growth

due to a step gust (K0ssner function) are indicated by the sketch at the lower right in

figure 18.

Practical Methods for Calculating Gust Forces on Wings of Finite Aspect Ratio

The pressure distribution needed to determine generalized gust forces from equa-

tion (27) is obtained from solutions of a lifting-surface equation (e.g., eq. (30), with the

use of the gust downw_sh described by eq. (31)). The formulation and solution of

pressure-downwash relations for wing configurations are highly complex. A number of

methods have been developed for the various speed ranges. These methods have already

been described in considerable detail in the paper by E. Carson Yates, Jr. Two examples

are very briefly discussed herein.
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For three-dimensional subsonic flow the so-called kernel function method is widely

used. The form of the aerodynamic equation differs from that of equation (30); it is an

integral equation

_ge -iwx/V = _ _ pg(_,_?,w)K(x-_,y-_?,w,M)d_ dT?
8_q S

(32)

where K is the kernel function. An inverse solution is obtained by collocation of down-

wash at a finite number of points on the surface. The unknown pressure is represented

by a linear combination of assumed pressure modes having coefficients to be obtained as

solutions. Solutions are obtained by numerical methods with a high-speed digital

computer.

For supersonic speeds the Mach box method is most frequently used, although the

kernel function method can also be employed. As is suggested by the name, in the Mach

box method the wing is divided into "boxes" as indicated by the following sketch:

1 / :
| J I/

zl

-- -I I I _ I

The equation relating the pressure on a box

boxes is

_Mach line

m at (x,y) to the gust downwash at all

Pg,m(X,y) = _ ImnWg,n AS n (33)
n

where Imn is an aerodynamic influence matrix and _Sn is the surface area of box n.

It can be noted that equation (33) is similar in form to equation (30).

For further information on these methods of calculating pressure distributions, the

content and references of the paper in the present compilation by E. Carson Yates, Jr.,

should be reviewed.

464



After the determination of pressures dueto the sinusoidal gust field, the general-
ized gust forces are obtainedfrom equation (27). A sample gust force is indicated by the

following sketch:

1.0

Qlg

Qlg)static

Imaginary /

The gust forces are, in general, complex numbers; the amplitude approaches zero as the

frequency approaches infinity; the amplitude is usually, but not always, a maximum at

zero frequency.

Operations With Equations of Motion

Stability analyses.- Although stability analyses are not really a part of gust-

response calculations, they are mentioned because certainly one desires to avoid calcu-

lating the gust response for an unstable airplane. In a trend study in which numerous

airplane parameters are changed to determine the effect on gust response, it is not dif-

ficult to choose thoughtlessly combinations which may result in an unstable airplane.

Incidentally, it is not easy to detect the presence of an instability from an examination of

the gust response only.

Solutions for frequency responses of the generalized coordinates.- The direct solu-

tion of the equations of motion yields frequency responses of the mode displacements

_j/_g. Some of these responses, such as pitch angle and its derivatives, are of interest
$

in themselves. However, many other responses must be determined from various com-

binations of the responses of the generalized coordinates.

Fi_equency i_espoiises uf- selected u_,_,,_,=o.*-"-"^- - "_,,,_ _' _'-_*'_ _ rc_ponse_ o .... _. -o

pressures, loads, and accelerations is described in this section. Pressures are obtain-

able from the equation

_g _g _ _g
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Values of _i/_g are obtained from equation (28) with _j/_g from equation (29) in
t

/

terms of _j]_g from the solutions of the equations of motion. The values of _g/_g

are obtained from equations (30) and (31).

Two methods for calculating bending moment (a load response) are widely used.

One, called mode displacement, is perhaps the easiest because it requires only the solu-

tions for the generalized coordinates. However, it requires a larger number of modes

for a given accuracy than does the alternate method. This method is based on beam

theory, and the expression for the bending-moment frequency response function is

_- a2_i(x,Y) _i
(35)

The second method is the loads-summation approach. The bending moment is obtained

by appropriate integrations of inertial loading from modal accelerations plus the aerody-

namic pressures from the modal motion and gust velocity.

is

The pressures _i/_g and

pg/_g in equation (34).

The loading to be integrated

_g/_g are obtained in the same manner as _j/_g and

(36)

CALCULATED RESULTS

Frequency Responses

Examples of results obtained from the methods of calculating frequency responses

are given in figure 19 for a B-47 jet bomber airplane. The purpose of these results is to

indicate how the responses are affected by the various approximations of the airplane

motions and deformations. Attention is directed first to the left-hand side of figure 19

where are plotted the frequency-response moduli for normal acceleration at a point on

the structure corresponding to the center of gravity of the undeformed airplane (as would

be measured by an accelerometer). The one-degree-of-freedom response indicated by

the dashed line is the response for the airplane considered rigid and free to plunge only.

The addition of rigid-body pitching motion results in the two-degree-of-freedom response

indicated by the dashed-dotted line. Note the appearance of a resonant peak at the natural

466



frequency of the short-period mode. The solid line represents the three-degree-of-
freedom response that results from the addition of the first elastic mode,which is pre-
dominantly a wing bendingdeformation. This responseis double-humped.

Onthe right-hand side of figure 19are plottedwing-root bendingmomentsfor the
various degreesof freedom. It is obvious that the wing bendingmodeis the predominant
contributor to the bending-momentfrequency responseand cannotbe ignored. These
results and a description of the method of calculation are presented in references 1 and4.

Calculated power spectra andsomestatistical parameters of the airplane responses
are presentednext. First, however, the pertinent relations are reviewed. The input-
output relation is

• z(f)=IHz(f)12 Wg(f)

The mean-square value of response z is

oo

az2 = _0 ¢I'z(f)df

For a Gaussian process the average frequency of exceeding a response peak of level

is

where

N(z) = N0,ze

z2

2_z 2

-]1/2

f2q'z(f) di{

For convenience in subsequent applications

(YZ _=AZ

aWg

and hence

N(z) = N0,ze

z2

2Az2CrWg 2

(37)

(38)
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Power Spectraand Statistical Parameters

In figure 20all terms in the input-output relation and the statistical parameters
are shownfor the wing-bending-momentresponseof the airplane for which frequency
responseswere shownin figure 19.

The von K_trm£nspectrum in terms of frequency in cps for L = 2500 feet

(762 meters), which is a representative turbulence-scale value, is plotted in linear scale

on the left side of figure 20. Note the rapidity of the attenuation as the frequency

increases.

The square of the modulus of the bending-moment frequency response is plotted in

the center. Plotted on the right side is the product of the turbulence spectrum and the

square of the modulus of the frequency response; this product is, of course, the response

spectrum. It can be seen that the wing bending mode, peaking at about 1.5 cps, is the

dominant contributor to the value of A_ 2 and that N O is 1.33 cps, which is also indic-

ative of the effect of the bending mode. It can be noted too that the short-period mode is

readily identifiable at f = 0.5 cps.

Effects of varying some turbulence and airplane characteristics are shown in fig-

ures 21 to 23. The curves from figure 20 are used as reference conditions.

The effect of changing the scale of turbulence from 2500 feet (762 meters) to

500 feet (152 meters) is indicated in figure 21. The level of the turbulence spectrum is

increased in the range shown. The frequency response, of course, is not changed. The

resulting bending-moment power spectrum is increased in amplitude but not changed in

shape. Therefore, the value of A_ 2 has been increased by a factor of 3 and the value

of N O is essentially unchanged.

The effect of a 50-percent increase in the frequency of the wing bending mode is

indicated in figure 22. The input spectrum is not shown; however, it is the same as for

the original turbulence-scale value (L = 2500 feet (762 meters)). On the left are shown

the moduli of the frequency responses and on the right the corresponding bending-moment

power spectra. The amplitude of the bending-mode peak in the power spectrum has been

appreciably reduced for the higher natural frequency case (case II) as the result of the

attenuation of the turbulence spectrum with increasing frequency. This attenuation has

little influence on the value of A_ 2, however, because the width of the frequency

response is proportional to the natural frequency and is therefore larger for the higher

frequency mode. The decrease in A_ 2, consequently, is only about 10 percent. The

value of NO, however, has increased by about 40 percent as a result of the increase in

the natural frequency. (Recall that N O is a function of the second moment of the

spectrum.)
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The effect of increasing the dampingratio (ratio of dampingto critical damping)of
the wing bendingmodeby about 40percent is shownin figure 23. The result, primarily,
is the reduction of the magnitudeof the resonant peakof the bending-modefrequency
response (left side) with an associated reduction in the area under the bending-moment
spectrum (right side). The parameter A-- 2 is reducedby about30 percent and NO isM
reducedby about 5 percent. For low values of the dampingratio of a mode(_ < 0.1), an
increase in dampingratio is effective in reducing the value of Aw2.

M

Thus the procedure for calculating somestatistical parameters that describe air-
plane responsesto short patchesof atmospheric turbulence hasbeensurveyed. This
procedure wasbasedon the application of random-process theory with simplification
afforded by particular statistical properties of theturbulence patchesand the lineariza-
tion of the aerodynamics andthe airplane dynamicsystem. The question to be considered
next is, can theseproperties beverified ?

VERIFICATION FROM FLIGHT MEASUREMENTS

Properties of Short Samplesof Turbulence

Isotropy.- Power spectra of atmospheric turbulence in a thunderstorm are pre-

sented in figure 24 for the three orthogonal components (vertical, Wg; lateral, Vg; and

longitudinal, Ug) together with the respective root-mean-square values. The frequency

argument is spatial frequency (_ = v) in rad/ft (rad/m ). It is to be noted that the values

of a 1 are based on an integration from a lower limit of _ = _21 = 10 -3 because the

spectrum could not be determined accurately at lower frequencies.

The spectra and the truncated root-mean-square (rms) values for the vertical and

lateral components are nearly the same. The spectrum and truncated rms value for the

longitudinal component are lower than those for the other components. However, this mea-

sured difference is not necessarily an indication of nonisotropy because the shape of the

theoretical spectrum for the longitudinal component also differs from the shapes for the

other components. The theoretical value of al,ug based on the lower limit of integration
is indicated in the lower right corner of figure 24. The measured value is not greatly dif-

ferent from the theoretical value, and so isotropy is approximated.

.qt_nn_-_y._ Spectra and truncated rms values for two halves of a 200-second

sample of turbulence in a thunderstorm are shown in figure 25. Ideally the results

should be the same. It is apparent that some nonstationarity exists in this sample.

Probability distribution.- Data from a turbulence sample in a thunderstorm were

processed to determine the probability of exceeding given levels. The measured data
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were thenplotted on a chart on which a Gaussianor normal distribution appearsas a
straight line, as shownin figure 26. The degreeof agreementof the measuredand nor-
mal curves is judgedgoodenoughfor anassumptionof normality, althoughthe data indi-
cate a tendencyfor the larger values to occur more frequently than for a normal
distribution.

Power spectra.- The curves in figure 27 show the results of fitting the yon K£rm_n

power spectrum to a spectrum determined from measurements during flight in a thunder-

storm by matching the truncated rms values and choosing the value of L for best fit.

The match is fairly good. For this sample the value of L was 5600 feet (1707 meters);

however, similar comparisons with many other measured spectra indicate some vari-

ability in the value of L. A reasonable average appears to be about 2500 feet

(762 meters) for altitudes above 2500 feet (762 meters).

Additional power spectra of turbulence for various weather conditions are displayed

in figure 28. The rms values are representative of the turbulence intensities associated

with the different meteorological conditions. The spectra, although irregular, all are

proportional to _2-5/3.

Verification of Airplane Frequency Responses

Airplane frequency responses can be determined from power spectra of turbulence

and of airplane responses processed from measurements taken during flight. The sim-

plest relationship is the inverse of the input-output relation previously presented; that is,

Other relations exist in random-process theory that permit phase information to be

determined as well.

Frequency responses determined from flight measurements are compared with

calculated frequency responses for several airplanes. In some of the figures showing

these comparisons, the expression "transfer function" is used synonymously for fre-

quency response function, although strictly speaking it should not be.

Both measured and calculated frequency responses for bending moment at three

semispan stations on the wing of a B-47 airplane are shown in figure 29. The ordinate

is scaled in units of acceleration per unit gust velocity. This unusual scale was obtained

by dividing the bending strain in turbulence by the bending strain per unit acceleration in

a slow pull-up maneuver. This procedure was used in lieu of an elaborate calibration of

the strain gages on the airplane by application of known forces. The result is a measure
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of the dynamic loads in turbulence relative to statically applied loads. While the agree-

ment between calculated and measured results is not close, it is not bad considering the

complexity of the problem. (This was, as far as is known, the first time frequency

responses were obtained from flight measurements and also the first time they were cal-

culated for an airplane in turbulence for comparison with flight data.)

In figure 30 plots of calculated and measured frequency responses and power spectra

for bending moments in the wing of the B-52 airplane are presented. All functions indi-

cate appreciable responses from the first elastic mode below 1 cps and from a higher

elastic mode near 2 cps. The calculated values overestimate the response at the lower

frequencies and underestimate at the higher frequencies. Another feature, as indicated

by the power spectra, is that the contribution of the higher frequency elastic mode to the

rms value is appreciably less than that from the first elastic mode.

The sketch in figure 31 depicts the B-58 airplane. Fairly extensive analytical and

flight studies of local acceleration responses have been made with this airplane. Some

of the results for vertical acceleration components are shown in figures 32 to 34. The

particular stations considered are indicated in figure 31; acceleration A428 is at the

pilot's station, acceleration A1 is at the nominal center of gravity, and acceleration All

is at the aft end of the fuselage. The moduli (or magnitudes) of the frequency responses

are plotted in figures 32 to 34. The flight speed is subsonic.

In figure 32 fairly good agreement exists between the measured and computed

responses at the center of gravity on the basis of two rigid-body and six elastic modes.

At the pilot's station (fig. 33) the two sets of responses agree fairly well at the short-

period mode near 1 cps; however, at the higher frequencies the calculated response is

consistently higher than the response based on the flight test. The results shown in fig-

ure 34 for the aft station indicate considerably poorer agreement for modal responses at

4 cps and at higher frequencies.

The statistical parameters An and N O are shown in figure 35 as functions of the

fuselage station. The values of An from calculations and flight measurements are in

very good agreement at the three stations where flight data were obtained. The effect on

An of the relatively poorer agreement between calculated and measured frequency

responses at the higher frequencies is minimized as a result of the low level of the tur-

bulence spectrum in this frequency range. The agreement between calculated and mea-

sured NO is not as good as that for An. The second moment of the response spectrum

tends to make the effects of differences in the frequ_,lcy _:esponse _,,,_v,,__'-"*_...... ,-w _v

pronounced.
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APPLICATION TODESIGN

Concepts

At the outset of this presentation, the characteristics of airplane responses to tur-

bulence during routine flight operations were described in terms of the statistical param-

eter N(z), the average frequency of exceeding a response peak of level z, which is

significant from the standpoint of the occurrence of single extreme loads. Also, a

description was given of the relation of the statistics of response to the statistics of tur-

bulence on the basis of the simplifications permitted by the consideration of short samples

of turbulence. The short samples, of course, are not representative of the turbulence

experienced in routine flights.

In this section, a description is given of a procedure used to synthesize for design

purposes the parameter N(z) for routine flight by using the results of short samples of

turbulence and the measured probability of distribution of turbulence intensity in the

atmosphere. In a sense, a full circle will have been completed, in that this paper started

with an indication of the need to describe the overall load response experience in terms

of N(z) and it ends with an estimate of N(z).

A reminder of events in a routine flight is provided by the VGH record shown in

figure 2. As implied by the nature of the acceleration trace an, the turbulence encoun-

tered is intermittent and variable in intensity. It is noted that the altitude and airspeed

change during the flight. Fuel is consumed and therefore the weight of the airplane

changes. The changes in the airplane flight conditions produce changes in the airplane

frequency response that must be accounted for in the procedure for synthesizing a sta-

tistical description of the responses for an extended flight. Pertinent characteristics

that must be considered are summarized in the following listing:

(1) Turbulence characteristics:

Intermittence

Variable intensity (nonstationary)

Variation in scale L

(2) Airplane characteristics:

Variation in magnitude and distribution of weight

Airspeed variation

Altitude variation

The basic approach to applying the relations developed for short samples of turbu-

lence to account for the characteristics of general flight experience just listed includes

the following steps:
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(1) The total expectedturbulence experienceis synthesizedas a summationof
individual patchesof turbulence for which random-process methodsare valid.

(2) The average frequency of exceedinga givenresponsepeakof level z (that is,
N(z)) is calculated for eachpatch.

(3) Thevalue of N(z) for the total experienceis obtainedfrom the summation of
the values of N(z) for the patches,weightedby the probability of occurrence of the
patches.

The conceptof individual patchesis illustrated by the sketchat the top of figure 36.
The patchdesignated dO represents distance flown in smoothair, andthe other patches
represent turbulence havingvarious root-mean-square intensities ai (i = I, II, III).

Probabilities of encountering patches of given intensities are defined by di/d T = P(ai),

and the distribution of P(_i) with intensity _i is illustrated by the sketch at the lower

left of this figure. For the limiting case, in which the turbulence is represented by a

continuous variation in rms intensity, the probability is expressed as the density function

p(a), as shown in the lower right sketch.

The corresponding representation of N(z) in terms of the individual patches is

expressed as a summation of contributions from each of the patches based on the rela-

tions developed from random-process theory and weighted by the distance flown in each

patch. That is, on the basis of equation (38),

2 ol2Ai 2 2 _ii 2AII 2
e + diiN0,Ii e + . (40)

z 2

For the continuous variation of intensity, the summation becomes the integral involving

the probability density p(a). That is,

z 2

_: 2°2Az2N(z) = N0P((r)e da (41)

From measurements made during many routine flights, the probability density p(a) has

been determined empirically and curve fitting has resulted in the following expression

for N(z) at any given altitude:

z Z

N(z) = PIN0 e ac,IAz + P2N0 e ac'2Az (42)
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dI d2
In this equation Pl = _TT and P2 =dT where d 1 is the flight distance in "nonstorm"

conditions, d 2 is the flight distance in "storm" conditions, d T is the total flight dis-

tance, fc,1 is the rms intensity of composite nonstorm turbulence velocity, and ac, 2

is the rms intensity of composite storm turbulence velocity. The designations nonstorm

and storm are only very broadly related to meteorological conditions in the sense that

generally the intensity fc,2 is larger than fc,1 and the probability P2 is smaller

than Pl, as might be expected. The function N(z) was fitted by two exponential terms

and the respective designations nonstorm and storm are used primarily for convenience.

A graphical illustration of equation (42) is shown in figure 37 in the form of a semiloga-

rithmic plot. From extensive measurements of turbulence, the parameters Pl, P2,

fc,1, and ac, 2 in equation (42) were established to be functions of altitude as shown in

figure 38.

The remaining parameters in equation (42), N O and Az, also depend on altitude

and are affected by airplane weight, airplane speed, and turbulence scale L as well.

The procedure for accounting for the effects on the variations in all these quantities in

establishing a design function N(z) is called "mission analysis."

Mission Analysis

The initial step in mission analysis is the establishment of a representative flight

profile for design purposes. An example is indicated in figure 39 as the variation of

altitude h with flight distance. The associated variations of airspeed V and airplane

weight W are also shown. The variation of the scale of turbulence L during the

representative flight is also illustrated (fig. 40).

In the next step the total flight distance is divided into a number of stages, and the

quantities (I)wg(f) IHz(f)l 2, (I)z(f) Az, N 0, Pl, P2, 1,and are deter-' ' fie, ac,2

mined for each stage. Examples of the variations of Az, NO, Pl, P2, fc,l' and

ac, 2 for each stage of flight are shown in figures 40 and 41.

The final step in the mission analysis involves the computation of N(z) for each

stage of flight by use of equation (42) and the summation operation to obtain NT(Z), the

total N(z) for the entire flight. This step is illustrated in figure 42. Each semilog

plot for an individual stage is of the same form as that illustrated in figure 37. The sum-

marion operation is described by the equation at the bottom of figure 42.

The total value NT(Z ) is the basis for establishing the design load for a selected

risk level, provided that the flight profile chosen for the mission analysis is truly repre-

sentative of the type of service in which the airplane is used.
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The adequacyof this procedure was investigated b:yapplying the mission-analysis
methodto the determination of NT(Z) for the load factor n of an airplane type that
was gust critical andthat hadbeenin satisfactory service for a number of years. The
results comparedwith dataobtainedfrom flight instruments over a period of about 50000
flight hours are presented in figure 43. The agreementof measuredand calculated
results is reasonably good. The calculatedvalues are slightly unconservative at the
higher levels, but are considered satisfactory.

The coverageof this subject in a single paper is, of necessity, broad and incom-
plete. There are a number of related subjects that were not discussedin detail. These
subjects include the responsesof the lateral modesof motion, cross-spectral relations
and two-dimensional turbulence problems, treatment of combinedloads, flight measure-
ments of turbulence velocities andairplane responses, methodsof processing measured
random time functions to obtain power spectra, andstatistical error analysis. The
reader is referred to the present bibliography andto the extensivebibliography in ref-
erence 1for further information on these subjects.
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Figure 2.- VGH record of representative routine flight.
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Figure 16.- Gust down.ash.

Figure 17.- Effect of penetration of gust field by wing of finite chord.
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Figure 18.- Effect of gust penetration and wake in a harmonically oscillating airstream.
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Figure 19.- Effect of various airplane motions and deformations on calculated frequency
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Figure 20.- Terms in input-output relation and statistical parameters for wing-bending-

moment response of swept-wing subsonic jet bomber.
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Figure 22.- Effect of variation in bending-mode frequency.

JH_(f) I

Frequency response

I
/\

I

Ii
--_ = 1.4 i I
tI Ill_I

/A',

/ ,
1.0

Bending-moment spectrum

(AM2)II

_ 0.7

IN0)H

@_(f) _ =0.95

°Wg2 I

I
I i

i |
i I

, %
2.0 0 1.0 2.0

Frequencyf,cps
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Figure 31.- B-_8 airplane.
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8. GUST ALLEVIATION

By William H. Phillips

Langley Research Center

ABSTRACT

A discussion is presented of the response of an airplane to turbulence, including

techniques for the alleviation of lateral and longitudinal motions. A simplified theoreti-

cal treatment of the longitudinal response to vertical gusts, which allows calculation of

the effects of various types of gust-alleviation systems, is presented. Flight experi-

ments on various gust-alleviation systems are reviewed. A brief discussion is given of

the application of these systems to different types of airplanes. Finally, methods of

refinement of the simplified theory to include effects of horizontal gusts, unsteady lift

effects, and isotropic turbulence are described.

INTRODUCTION

The subject of gust alleviation has been a matter of concern to aeronautical engi-

neers since the earliest days of aviation. Gusts are responsible for some of the more

severe loading conditions on an airplane, and these conditions are usually the critical

design conditions on transport or bomber types which are not intended for violent maneu-

vering. Also, many people are susceptible to airsickness during flight through rough air.

In recent years, with the trend in airplane design toward long, slender fuselages

and thinner wings, structural oscillations have become a serious problem. These oscil-

lations may cause fatigue of the structure and may even incapacitate the pilot, thereby

causing loss of control. The adverse effects caused by gusts include the loads and

stresses caused by a single extreme load and the fatigue damage caused by repeated

loads. They also involve motions and deformations of the airplane which may cause

upsets and loss of control and physiological effects resulting in deterioration of crew

performance and passenger discomfort.

Despite the serious nature of gust-response problems, attempts to alleviate the

effects of gusts have been rather rare in the past. Even at present, none of our existing

commercial airplanes include any provisions for gust alleviation. The slow progress in

this area may be attributed to the fact that many serious problems exist in the design of

such systems. Techniques for analyzing such problems have in some cases been devel-

oped fairly recently. These techniques include random process theory and computerized

techniques for calculating the dynamic response of systems with many degrees of free-

dom. Also, electronic devices and servomechanisms of the required reliability for use

L-6892 505



in the primary flight control systems of airplanes are just now becoming available. The

subject of gust alleviation is quite appropriate to illustrate how some of the more

advanced analytical and computing techniques can help solve problems which have not

been handled adequately in the past.

Some of the lack of interest in practical gust-alleviation systems may be attributed

to the trend to flight at higher altitudes and the improved techniques for avoidance of bad

weather made possible by turbojet power plants and weather radar systems.

In the design of recently proposed military airplanes, however, particularly those

intended for high-speed flight at low altitudes where gust disturbances may be expected

to be most severe, a great deal of effort has been put into the analysis of systems to

alleviate these effects.

In the commercial airplane field, the probable future development of V/STOL types

and the expansion of short-haul service may revive interest in gust alleviation for sub-

sonic airplanes. Current interest in these problems is expected to lead to the eventual

development of practical gust-alleviation systems for use on both military and commer-

cial airplanes.

In this paper on gust alleviation, the nature of the disturbances caused by flight

through turbulence is reviewed. A theoretical analysis is presented of the longitudinal

response of a rigid airplane and of the effectiveness of various types of controls in

reducing the response. Experimental studies of several types of gust-alleviation systems

are recounted. Finally, a brief introduction to analytical techniques for the calculation of

response cf airplanes to a two-dimensional random turbulence field is given.

SYMBOLS

b wing span

mean aerodynamic chord of wing

C m pitching-moment coefficient,
M

lpv2Sc

C z

D

vertical-force coefficient,

d
differential operator,

ds

Z

lpV2S
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d increment of distance along longitudinal axis

acceleration of gravity, 9.81meters per second2

ky

Ky

radius of gyration of airplane about Y-axis

nondimensional radius-of-gyration factor, ky
C

K ratio between flap deflection and quantity measured by gust detector with

elevator fixed

lift

longitudinal integral scale of turbulence (see ref. 22)

ratio of tail length to mean aerodynamic chord of wing

l n ratio of distance between angle-of-attack vane and center of gravity to mean

aerodynamic chord of wing

m mass of airplane

M pitching moment (positive nose-up)

normal acceleration

pitching velocity,

tV
distance measured in chords, -_-

wing area

t time

Ug

V

horizontal velocity of gust (positive rearward)

velocity of center of gravity of airplane with respect to still air

507



w velocity along Z-axis

Wg

-2
Wg

X

vertical velocity of gust (positive upward)

mean square value of vertical gust velocity

distance along longitudinal axis

Y

Z

distance along lateral axis

vertical force (positive downward)

%

%

_e

angle of attack

angle of attack due to gust, Wg (see fig. 5)
V

angle between X-axis and velocity vector V (see fig. 5)

angle of attack of wing

function expressing spanwise distribution of lift due to uniform angle of attack

elevator deflection

flap deflection

deflection of angle-of-attack vane

downwash angle at tail

8 angle of pitch relative to horizontal (see fig. 5)

relative-density factor, m
pSc

distance

P air density
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T

(_n

nondimensional time lag of servomechanism, expressed in chords traveled

power spectrum of normal acceleration

4)w e

_Wg

power spectrum of effective vertical gust velocity

power spectrum of vertical gust

correlation function

CO frequency

COn

Subs cripts:

natural frequency of system

e elevator

H due to horizontal gust

t tail

V due to vertical gust

w wing

A dot over a quantity indicates differentiation with respect to time.

Stability derivatives are indicated by subscript notation; for example,

Rotary derivatives are defined as indicated by the following examples:

8Cz 8C Z _ 8Cz

_z_-_(_) czo0__,c/ _zo_o0r__
\2v/ by2/

8Cz 8C z

_zo_::____ czo_:_(_
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A subscript following a stability derivative indicates componentof airplane which con-
tributes the derivative; for example,

Cm5f)w
variation of pitching-moment coefficient with flap deflection contributed by

wing

variation of vertical-force coefficient with elevator deflection contributed by
tail

NATUREAND EFFECTS OF RESPONSETO TURBULENCE

In order to determine the most effective meansof providing smooth flight, it is
helpful to examine the motion of a typical airplane in roughair. A typical record of the
accelerations and angular motions of anairplane in flight through rough air is shownin
figure 1. This figure showsthat the airplane is disturbed aboutall axes. The distur-
banceshownis for a particular magnitudeof turbulence, but the relative amplitudes of
the various quantities plotted would tend to remain the same for various intensities of
turbulence. This figure showsthat the quantity of most concern is the normal acceler-
ation, inasmuchas the values reached (1.7gand -0.5g) are a relatively large percentage
of the design limit load factors (typically for a transport airplane, 2.5g and -1.0g) andare
also large enoughto disturb passengersbecauseof the physiological sensationof changes
in bodyweight. The lateral acceleration is relatively muchsmaller. Corresponding

angular displacements are only a few degrees and are comparable to those experienced

in other modes of travel. Nevertheless, these angular motions may be a factor in

inducing motion sickness because of the sensitivity of the inner ear to angular motions.

The data of figure 1 also show that the motion is of an irregular oscillatory nature. This

characteristic is of importance in determining the analytical technique required for study

of the motion.

Little information is available as to the relative importance of various factors

which might contribute to airsickness. Some research on this subject was conducted

during World War II at Wesleyan University. In these tests a large number of men were

subjected to vertical oscillations in a device similar to an elevator. Some of the results

obtained in these tests are shown in figure 2. This figure shows the percentage of men

who became sick within a period of 20 minutes when they were subjected to oscillations

of various periods. These data appear to indicate that oscillations of 3- to 4-second

periods are more likely to cause airsickness than oscillations of 1- to 2-second periods.

In the design of a device to improve passenger comfort, therefore, it may not be neces-

sary to emphasize the reduction of response to gusts of very short periods. Higher fre-

quency disturbances, however, in the range from 1 to 10 cycles per second, may be
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serious from the standpointof structural fatigue and,if they are of sufficient amplitude,
may interfere with the pilot's vision or control coordinationbecauseof resonant response
of parts of the body.

TECHNIQUESFORLATERAL AND LONGITUDINALGUSTALLEVIATION

Calculation of the response of airplanes is ordinarily simplified by separation of

the complete equations of motion into a symmetric group (longitudinal motion) and an

asymmetric group (lateral motion). (See ref. 1, ch. 4.) In flight through turbulence, as

shown in figure 1, both longitudinal and lateral motions are excited simultaneously.

Nevertheless, the justification for separation of the analysis of longitudinal and lateral

motions remains valid provided the disturbed motions are sufficiently small to apply the

usual assumptions of linearity.

Lateral Motion

As shown previously in figure 1, the lateral acceleration experienced in flight

through turbulence is much smaller than the normal acceleration. This difference

results from the fact that the side force due to sideslip of a conventional airplane is

ordinarily only about 10 percent of the normal force due to change in angle of attack.

For this reason, the major emphasis in suppressing lateral response is placed on the

elimination of angular motions in roll and yaw. These motions can be sensed by rate or

displacement gyroscopes and controlled by the existing aileron and rudder control sur-

faces. Devices known as yaw dampers or stability augmentation systems provide this

function on many existing airplanes. Existing -,.,_,_w.,.._,'_"+"n_''÷_v.._ comm,_r_ial........... _iv]j_nor._ incor-

porate these features.

The lateral motions of an airplane in turbulence may be calculated by estimating

the disturbing forces and moments (yawing moment, rolling moment, and side force) due

to passage through random turbulence and applying them as forcing functions to the clas-

sical lateral-stability equations. Procedures for making these calculations are given in

reference 2. The design of stability augmentation systems to suppress the angular

motions is a problem in regulator theory which may be handled by techniques described

in books on servomechanisms, as for example, reference 3. Because conventional tech-

niques are capable of providing satisfactory systems for alleviating the lateral motions,

these tec iies are ,Lvt _,oo,.,., ._. ..............

Longitudinal Motion

The longitudinal motion of an airplane in turbulence consists of changes in both pitch

angle and normal acceleration. The use of the elevator control to reduce angular motions

in pitch, however, does not eliminate the vertical accelerations, which result from th,:
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direct effect of lift changescausedby variations in vertical gust velocity. In fact, main-
taining the airplane at a constantangleof pitch increases the acceleration causedby low-
frequencygusts becausea stable airplane tends to relieve changesin acceleration by
pitching into the gusts. In order to avoid the vertical accelerations dueto rough air, the
additional lift causedby a changein angle of attack from the steady flight condition must
beeliminated. The gust disturbance must first be sensedby a suitable instrument; for
example,anangle-of-attack vane or anaccelerometer. The output of the sensor is then
used to operate control surfaces to offset the effect of the gust.

The following methodsmight be consideredto accomplish this result: (a) Pitching
the wholeairplane by use of the elevators to maintain a constantangle of attack during
passagethrough gusts, (b) variation of wing incidence to maintain a constantangleof
attack during passagethrough gusts, and (c) operation of flaps or other controls to offset
the lift increments on the wing. In connectionwith methods (b) and (c), a problem of
longitudinal control arises. Normally, control of the airplane by the elevator is accom-
plished by changingthe angleof attack. If the lift increment due to changein angle of
attack is eliminated, the elevators will be ineffective for producinga changein the direc-
tion of the flight path. The alleviation system must therefore incorporate meansto
restore this control capability.

THEORETICAL ANALYSIS

In the past, many calculations of gust loads on airplanes, as well as analysesof
gust-alleviation devices, were madeby assuming some type of discrete gust suchas a
step gust or a ramp gust. In practice, however, as shownin figure 1, the actual gust
variations are of an irregular, oscillatory nature. It is nowwell knownthat any such
gust variation, either of the continuousor discrete type, may be expressedas the sum of
sinusoidal wavesor various frequencies andamplitudes. For this reason, the most gen-
eral type of analysis may be madeby calculating the responseof the airplane to sinus-
oidal gustsof various frequencies. The actual distribution of gust amplitudes as a func-
tion of frequencywhich occurs in the atmosphere is knownas the gust spectrum, and an
analysis which takes into accountsucha distribution is knownas a spectral analysis. In
paper no. 7 by Kermit G. Pratt, the techniques for calculating the response of an airplane
to turbulence by use of random process theory were described. As an example, the
methodfor obtaining the outputpower spectrum of normal acceleration as the product of
the power spectrum of vertical gusts andthe square of the system frequency response is
illustrated in figure 3. Someof the experimental results presentedsubsequentlyuse
this form of representation.

In order to obtain the system frequency response required by this technique, the
responseof the airplane is calculated to sinusoidal gusts of constantamplitude and
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various frequencies. This response may be readily calculated from the transfer function

relating the response and input variables.

System Under Consideration

A simplified sketch of the type of vane-controlled acceleration alleviator analyzed

herein is shown in figure 4. The servomechanism which operates the flap is assumed to

require no force at its input. In practice, electrical signals generated by transducers at

the vane and control stick would be applied as inputs to the flap servomechanism. The

pilot's control input is fed to the flap as well as to the elevator to avoid the loss of longi-

tudinal control which was stated previously to result if the lift due to change in angle of
attack is eliminated.

Assumptions Made in Analysis

The assumptions made in the analysis described herein are as follows:

(1) Only longitudinal response is calculated.

(2) Airspeed is assumed constant.

(3) Only rigid-body motions of the airplane are included.

(4) The airplane has a conventional straight-wing configuration, with tail surfaces

aft of the wing.

(5) Only vertical gusts are considered, and these gusts are assumed constant

across the span at any instant.

(6) Unsteady lift effects are not treated in full detail.

These assumptions restrict the scope of the analysis so that some of the aspects of

gust alleviation discussed previously, such as structural oscillations, are neglected. The

important problem of reducing the vertical accelerations of a conventional, subsonic air-

plane in cruising flight may, however, be investigated with adequate accuracy by this

theory. The effects of relaxing some of these assumptions to allow consideration of a

wider scope of problems are discussed subsequently.

Reference Axes

A fundamental consideration in calm_l_t.ing response of an airplane to _lsts is the

selection of correct reference frames for the dynamic equations. All inertia forces

resulting from acceleration of the airplane must be referred to an inertial coordinate

system; that is, one which remains fixed in space. On the other hand, aerodynamic

forces result from motion of the airplane with respect to the air mass in its vicinity

which, under gusty conditions, is moving with respect to the inertial frame. These
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considerationsmay be taken into account,whenconsidering only vertical gusts, by a
diagram suchas figure 5. From this figure, certain relations for the angleof attack
with respect to the air mass andwith respect to the fixed inertial frame, the angle of
attack of the wing, andthe angle indicated by a free-floating vane mountedona nose
boomare as follows:

W

=% +%

5v = -% - _ge/n D + DO1n

Similar relations may be derived for the angle of attack at the tail. In setting up the

equations of motion, it is convenient to consider the contributions to the lift and moments

of the wing and tail separately. In this way, the lag effects between the gust hitting the

vane, wing, and tail, as well as lag in downwash, may be accounted for in a logical man-

ner. Such effects are called "penetration effects." These effects should be taken into

account for an accurate calculation of the dynamic motions of an airplane penetrating

gusts.

Derivation of Equations

The derivation of the equations is based on a procedure similar to that used in

the classical dynamic stability theory (ref. 1, ch. 4). Inasmuch as this derivation is

described in reference 4, it is not repeated in full herein. The procedure used consists,

first, in calculating the forces and moments produced by the wing and tail owing to small

increments in total angle of attack and pitching velocity. The equations are formed by

equating the force to the mass times vertical acceleration, and the moment to the pitching

inertia times pitching angular acceleration. Contributions of the rigid-body motion and

the gust velocity to the total angle of attack may then be separated, placing the gust-

induced terms on the right-hand side of the equations as forcing functions. Finally, fol-

lowing nondimensionalization of the equations, the contributions of the wing and tail to the

coefficient of each variable may be collected to obtain expressions for each stability

derivative in terms of the wing and tail contributions. If a gust-alleviation system is

incorporated into the airplane, effects of flap or elevator deflection resulting from

operation of the system may be collected along with the rigid airplane wing and tail
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contributions to the derivatives. The gust-alleviation system may therefore be treated
by considering it to modify someof the stability derivatives of the basic airplane.

Lag Effects

Basically, the classical dynamic stability theory dependson the assumption that all
the aerodynamicforces and momentsmay be calculated from a knowledgeof the state of
the airplane at a given instant. By the state of the airplane is meant the instantaneous
values of the variables which define its attitude and motion. For example, if the value of
the angleof attack at a given instant is known,the associatedpitching moment may be

obtainedfrom the derivative Cmar It was shownby Cowleyand Glauert in 1921(ref. 5)
that only one aerodynamic lag effect is of sufficient importance to require consideration
in calculating the short-period longitudinal motion. This effect is the lag of downwash
which causesthe appearanceof a moment generatedby the tail owing to the lift on the
wing at a slightly earlier time; this time is that required for the downwashto travel from
the wing to the tail. Cowleyand Glauert showedhowthis effect couldbe approximated in
the equationsby introducing a momentproportional to the rate of changeof angle of

attack Cm&. In this way, all the momentsmay still be calculated from the condition of
the airplane at a given instant. This approximation may beshownto bevery goodpro-
vided the time lag involved is short compared to the natural period of the motion under
consideration. This assumption is excellent in almost all casesof longitudinal motion
inasmuchas the lag corresponds to the time for the airplane to travel one tail length,
whereas the period of the short-period longitudinal modetypically corresponds to a dis-
tance traveled of from about 10to 100or more tail lengths.

In calculating the responseof a gust-alleviation system, other lag (andlead) effects
are introduced. For example, the gust encountersa vane or other sensor mountedahead
of the nosebefore it affects the wing. The subsequenteffect of the gust on the tail lags
the effect on the wing. A servomechanismintroduced betweenthe vane andthe flap
causeslag in the flap response. Rigorous treatment of theseeffects would introduce a
great deal of complication in the equations. For example,including a constant time lead
for encounterof the gust with the vane aheadof the wing changesthe conventionaldiffer-
ential equationsinto differential-difference equations,which have an infinite number of
roots. Representationof the flap servomechanismby its complete equationsof motion
or transfer function would increase the order of the system of equations. These lag and
iead efiecLs,however, are aii oi the sameorder of magniLudeas _'neiag of downwash/or
which the simple approximation introduced by Cowleyand Glauert hasbeenshownto be
adequate. Therefore, the approximation of all of these lag effects as contributions to
derivatives dependingon the rate of changeof the variables involved shouldbe sufficiently
accurate. In this way the gust-alleviation system may beanalyzedwithout increasing the
order of the basic airplane equations,andthe physical effects of various design features
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of the system may be seenby examining their contributions to the basic airplane stability
derivatives.

Effect of Systemon Stability Derivatives

Thoughthe completederivation of theseequationsis not presentedherein, the final
equationsin nondimensionalform are

1 1 DOCzq 12_D(_o- 0)- _oCz_- _D_oCZD_-_ - _fCz_f- _D_fCZD_f

1D_g(CZD_CZq)= 6eCZse + ogCZ_ + _

2/_Ky2D20 - a_Cm_ 1 1 DOCmq 1- _ D°oCmD_ - _ - 6fCm6 f - _ D6fCmD6f

= 5eCmse + OgCma + 12D°g( CmDa- Cmq)

The values of the derivatives in terms of the contributions of the tail and wing-fuselage

combination are

Cz a Czaw __

CZD _ = 21 8._.eCz
8_ ot

= Cm6_v + (1 - 8ehCmCm_

8e Cm
CmDc_ = 2l _

CZq Cmq = 2lCmo (= 2lCzo t

= 8e = _ 8e Cm
Czsf (C Z 5fJw 86f CZ_ Cm6f (Cm 6f) w _ o_

8c

CZD6f : 2l _f CZo _ CmDsf 21 0_e= 86f Cm°'t

These equations refer to the basic airplane. The gust inputs appear as forcing terms on

the right-hand side of the equations. The terms on the right-hand side involving the

rotary derivatives CZDcz, CZq , and so forth result from the penetration effects referred

to previously.
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A similar set of equationsresults whenthe action of a gust-alleviation system such
as that shownin figure 4 is considered. The effect of the alleviation system may be con-
sidered simply to changethe derivatives of the basic airplane. Expressions for these
changedderivatives are rather lengthy but two of them are given as examples. First,
make the following substitution for the flap deflection in the preceding equations:

5f = K6ve-_D

The expressions for the derivatives then become

I- Oe +K 8e._=CZ_ Cz_

c oo=  z E 00--_+1_-_ l +2 Z6f) w

Values of pitching-moment derivatives Cmc_ and CmD _ may be obtained by substi-

tuting C m for C Z in the preceding expression. These expressions make it clear that

the system provides a powerful capability to modify the derivatives. By adjusting the

gain constant K, the ratio of flap deflection to vane deflection, the effective lift-curve

slope of the airplane CZa may be reduced to zero. Similarly, the static stability Cma

may be varied widely in either the stable or unstable direction, depending on the values of

Cmsf and 8e/85f. If the flaps move up to counteract an upward gust and the resulting

pitching moment due to the flaps is positive, the flaps will add an unstable increment to

Cm. Neglect of these very powerful effects of a gust-alleviation system on airplane

stability has been responsible for some of the disappointing results obtained in some of

the experimental systems which have been tried.

Calculated Effects of Different Control Surfaces

In order to give a general idea of the effects of different types of gust-alleviation

systems, some calculated results are now presented. For comparison with results to be

presented subsequently, figure 6 shows the response of the basic airplane to sinusoidal

gusts of various frequencies. These and subsequent calculations in this section have

m_,_A A*A_. ,a._a _4.,m. _,.e,.mL,m._lJ,J._,k.,U.I;5 k._,L,i.l,l.L,J.l;ll..,IL _U i, ll_ A..IUU_.I.(_I,_ .lL,el_,--,_ ,lylnS ,_.t _tyty IIIILIL_ _l.,ItLI." IIUUI:

(89.4 meters per second). The curves of figure 6 show that at very low frequencies the

acceleration is reduced because the airplane, as a result of its static stability, tends to

maintain a constant angle of attack with respect to the airstream. The curves approach

a constant value at the higher frequencies plotted. This constant value results from the

neglect of unsteady lift effects, structural oscillations, and the random variations of gust
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velocity across the span. If these factors were taken into account,the responsewouldbe
expectedto reach the constant value shown(nearly equal to the acceleration causedby a
steadyangle-of-attack changeequal to the gust amplitude) over someintermediate range
of frequencies. Narrow peaks correspondingto excited structural modesmight appear
in the curve at higher frequencies, and the curves would eventually approachzero with
increasing frequencybecauseof unsteadylift effects andbecauseof the reduction of
averageangle of attack dueto random gust variations across the span.

Elevators

In order to study the possibilities of different systems of acceleration alleviation,
it is helpful to consider the control motions that wouldbe required theoretically to pro-
ducezero acceleration of the center of gravity during flight through gusts. Elimination
of the vertical accelerations doesnot necessarily avoid pitching of the airplane. There-
fore, pitching motions occurring with the different methodsof control are also of interest.

Figure 7 showsthe elevator motion required to producezero acceleration of the
center of gravity in flight through gusts of various frequencies andthe resulting pitching
velocities. The elevator motion required increases almost linearly with frequency and
reachesvery large values at high frequencies. In addition, it is foundthat the phase
angleof the elevator motion, not shownin the figure, must lead the angle-of-attack varia-
tion dueto the gust by amountsincreasing from 90° at low frequencies to 160° at high
frequencies. Suchlarge phaseleads are difficult to obtain in practice and indicate the
reasonfor the inability of a humanpilot to counteract successfully the effects of gusts.
The pitching velocities shownin figure 7 also reach very high values compared to those
of the basic airplane. Thesehigh values of pitching velocity result from the fact that with
elevator control it is necessary to rotate the whole airplane to maintain a constantangle
of attack during passagethrough the gusts. These large pitching velocities are undesir-
able becauseof the changesin vertical acceleration which they causeat points somedis-
tance from the center of gravity. For example, in this case the vertical acceleration at
a point 2 chord lengths from the center of gravity would be greater than that of the basic
airplane with no acceleration alleviator at frequencies greater than 2 cycles per second.
The useof elevator control, therefore, doesnot appearvery promising as a meansfor
producingsmooth flight.

Trailing-Edge Flaps on Wing

It might be thought that operation of the flaps to offset the lift increment dueto gusts
would overcometheseobjections becausethe flaps canproduce lift increments without the
necessityof rotating the entire airplane. Figure 8 showsthe flap motion required to pro-
ducezero acceleration of the center of gravity andthe resulting pitching velocity. For
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these calculations it was assumed that the landing flaps were used as the acceleration-

alleviation device. These results show that the pitching motions produced by the use of

the flaps are even larger than those produced by the elevator. These large pitching

motions result mainly from the action of the downwash from the flaps on the tail. This

downwash acts in the same direction as the gusts and therefore produces large pitching

motions of the airplane. Furthermore, in certain frequency ranges the phase relation-

ship of these pitching motions is such that the angle-of-attack change of the airplane adds

to that of the gusts and as a result still more flap deflection is required to offset the

acceleration increments. These results indicate that the use of conventional trailing-

edge flaps as an acceleration-alleviation device is not likely to prove successful.

The theory worked out previously may be used to show what flap characteristics

would be required to eliminate accelerations and pitching motions of the airplane without

use of the elevator. Consider again the airplane approaching a small gust disturbance.

When the flap moves up to offset the gust, the pitching moment produced by the flap about

the wing quarter-chord point should be zero. Then, when the tail penetrates the gusts,

the downwash due to flap deflection combined with the downwash due to the wing lift should

just offset the gust velocity at the tail. These characteristics are not obtainable with

ordinary flap designs since the flap ordinarily produces a pitching moment about the wing

quarter-chord point and produces downwash in the opposite direction from that required

to offset the effect of the gust at the tail. The desired characteristics might be obtained,

however, by some modifications to the usual flap design. The flap pitching moment could

be reduced to zero by linking the flap directly to the elevator (or to a portion of the eleva-

tor). The reversed direction of downwash due to flap deflection might possibly be

obtained by _n_ng a small portion of the flapnear the fuselage to deflect in the opposite

direction from the main portion of the flap farther outboard.

Practical considerations may limitthe alleviationproduced by this system to some-

thing less than the complete elimination of airplane response, because complete allevia-

tion effectivelyreduces the variation of pitching moment with angle of attack,or longitu-

dinal stability,to zero. Itis necessary to preserve some longitudinalstabilityso as to

obtain desirable control characteristics. A considerable amount of acceleration allevia-

tion may, however, be provided while maintaining satisfactorycontrol characteristics.

For example, figure 9 shows the response of an airplane to sinusoidal gusts when it is

equipped with a vane-type acceleration alleviator. Characteristics have been adjusted to

to about one-fifth of those for the basic airplane, while the pitching velocities remain low.
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Flaps and Elevators in Conjunction

Another possibility which might be considered is the use of the flaps and elevators

in conjunction. By the use of these two controls it is theoretically possible to reduce both

the accelerations and pitching motions due to gusts to zero. A physical picture of how

this might be accomplished may be obtained as follows: Consider an airplane flying

through a small gust disturbance. When the wing reaches the gust, the flaps must be

deflected up to produce a lift increment opposing that from the angle of attack. This flap

deflection produces a pitching moment which must be offset by an elevator motion. Then,

when the airplane has moved to a position where the gust acts on the tail, the elevator

must deflect in such a way as to counteract the effects of the gusts and the downwash due

to the flap deflection. Since these downwash effects lag behind the flap motion, the eleva-

tor motion must also lag behind the flap motion by a phase lag which depends on the gust

frequency. A servomechanism might be designed with the desired phase characteristics,

but this method appears somewhat complicated. Another possibility is to use a closed-

loop pitch control in which pitching disturbances of the airplane, regardless of their

source, are sensed by a gyro and the elevator is moved to maintain the pitch angle

constant.

Response to Pilot's Control

As noted previously, the pilot's control in the vane-controlled alleviation system of

figure 4 is connected to the flaps as well as the elevators so as to avoid the loss of con-

trol capability caused by the operation of the alleviation system.

When the pilot deflects the elevator, the resulting events may be described as fol-

lows: First, the flap moves down producing lift in the desired direction. Then, as the

airplane rotates in response to the elevator, the angle of attack measured by the vane

increases and causes the flaps to move back up to their neutral position. This type of

control would therefore be expected to increase the speed of response of the airplane to

elevator control motions. Figure 10 shows the response to a step motion of the elevator

for the airplane with the vane-type acceleration alleviator as compared to the motion of

the basic airplane. The response is seen to be much faster, but there is no tendency to

oscillate or overshoot. This type of action has in recent years been termed "direct lift

control" and has been found to be advantageous for maneuvers requiring accurate altitude

control, such as landing approach.

Control Characteristics Required for Complete Alleviation

The appropriate combination of flap effectiveness, pitching moments, and downwash

characteristics should intuitively result in perfect gust alleviation. This condition occurs

when the flap lift just offsets the lift increment on the wing due to the gust, the flap
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pitching momentoffsets the pitching momenton the wing due to the gust, and the flap

downwash, trailing back in the airstream along with the gust, just offsets the gust velocity

at the tail. This same conclusion is found directly from the preceding theoretical devel-

opment. The values of the flap characteristics and gain constants required to satisfy this

condition are

K ._.

CZa w

CZ 5f) w

_=ln

  o,1 Cl
a6f Czo_w \

By substituting these values in the transfer functions giving the vertical and pitching

response of the airplane owing to gust inputs, the numerator terms all go identically to

zero. The agreement between intuitive reasoning and the results of the approximate

analytical development lend confidence to the belief that the assumptions of the theory are

sufficiently accurate for practical calculations, particularly in the case of a system

designed to provide a high degree of gust alleviation.

EXPERIMENTAL RESULTS

Many of the early methods employed in attempts at gust alleviation were devised

without adequate analysis by their inventors. As an illustration of such early methods, an

airplane built by Waterman about 1930 is shown in figure 11. In this airplane, the wings

were attached to the fuselage by skewed hinges. In flight, the lift on the wings was bal-

anced by the force of a pneumatic strut which acted as a spring and allowed the wings to

deflect in flight through rough air. A similar effect is obtained automatically with swept-

back wings since bending of a sweptback wing under a ioad reduces the angle of attack of

the tips. These methods are seriously limited in their application, however, because they

interfere with the provision of adequate lateral control. Deflection of the ailerons deflects

the wing in a manner which produces a rolling moment opposing that from the ailerons.

As a result, the lateral control effectiveness may be reduced and the reversal speed

excessively lowered.
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Several serious attempts have been made in the past to develop gust-alleviation

systems and test them in flight. These projects are now described briefly and, where

possible, comparison to theoretical predictions is made.

British

In England, shortly after World War II, a large commercial airplane which incor-

porated a system to alleviate wing bending moments caused by gusts was designed. The

ailerons were to deflect symmetrically in response to the output of some type of gust

detector so as to reduce the wing loads. The designers hoped thereby to reduce the

required weight and strength of the wing. As it turned out, this airplane never went into

service, but the proposal stimulated interest in a flight project in which a system of this

type was tried in a Lancaster aircraft (refs. 6 and 7). The system utilized a vane as a

gust detector to operate the ailerons symmetrically through a hydraulic servomechanism.

The system was built with little preliminary analysis, and when the pilot engaged the sys-

tem for the first time, the flight in rough air seemed appreciably more bumpy than with-

out the system. By reversing the sign of the gain constant relating aileron deflection to

vane deflection, the ride was made somewhat smoother.

The explanation of these effects can be seen from the foregoing theory. The aile-

rons, in deflecting up for an up gust, would relieve the load on the tips as intended, but

they would also produce a positive pitching moment, thereby reducing the static stability

of the airplane and causing it to nose up more in response to an up gust. Furthermore,

the reduced load on the tips gave a spanwise lift distribution which caused increased down-

wash at the tail, thereby adding to the noseup moment. The system, therefore, reduced

the natural tendency of the airplane to nose into the gusts at low frequencies, and thereby

increased the acceleration response in this range. As noted previously, the low-frequency

accelerations are the ones most uncomfortable to the human occupants. The system actu-

ally reduced some of the response at higher frequencies, but at still higher frequencies

the system destabilized the wing first symmetrical bending mode at 3 cycles per second.

This condition further aggravated the roughness of the ride.

Tests on C-47 Airplane

A second experimental program was conducted on a C-47 airplane Crefs. 8 and 9).

The objectives of this program were similar to those of the British experiment. The

ailerons were arranged to deflect symmetrically upward with upward wing bending by

means of a linkage system which added this component of deflection to that of the conven-

tional aileron linkage. Since the wing deflection provides a large available driving force,

no servomechanism was required, and as a result it was hoped that the system would be

sufficiently reliable to use on service airplanes. This system suffers from the same

objections as the British system. In addition, a further limitation was encountered
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becausethe inertia of the ailerons, combinedwith the flexibility of the operating linkage,
causedthe aileron deflection to lag behindthe wing deflection. Sucha condition is very
conduciveto flutter. In order to avoid flutter, the gain betweenaileron deflection and
wing bendinghadto bekept to a relatively low value. The system, with this limitation,
was able to reduce the mean wing bendingmomentsby only about 9 percent, andthe effect
on riding comfort was not noticeable.

NACA

A third set of flight experiments was conducted by the NACA in the period from

about 1952 to 1960. The results of this program may be found in references 10 to 14

which contain a complete discussion of the project. In the present paper, emphasis is

placed on pointing out the various considerations, procedures, and analyses that enter

into the design and testing of a system of this type.

The airplane used for the tests was a small twin-engine transport. The objective

of the tests was to study various systems which had been previously analyzed in the theo-

retical work and to demonstrate the feasibility of a gust-alleviation system employing

wing flaps and other control surfaces operated by a servomechanism.

Vane design.- Provision was made for testing the system with various combinations

of the aerodynamic derivatives influencing the response, and with either a vane or accel-

erometer sensor. A picture of the airplane with the nose boom and vane installation is

shown in figure 12. The vane was designed to follow the gust fluctuations as accurately

as possible. It was constructed of balsa wood and, with its syncro pickup, was shown by

wind-tunnel tests to have a natural frequency of 26 cycles per second and a damping ratio

of 0.6 at an airspeed of 220 feet per second (67.06 meters per second). It was realized

that the output of a vane measuring the gusts at one point would contain high-frequency

fluctuations which, because of their small spatial extent, would probably not affect the

entire wing of the airplane. This so-called "spanwise averaging effect" is important in

designing a gust-alleviation system for best performance and is discussed more fully

subsequently. For these tests, the decision was made to incorporate the necessary fil-

tering of the vane output in the control mechanisms operating the flaps, rather than to

incorporate any filtering in the dynamics of the vane itself. In t.his way, the vane data

could also be used to obtain an accurate record of the gust input.

Control surfaces.- A photograph showing the modified control surfaces of the test

airplane is shown in figure i3. Provision was made to connect a portion of the elevator

to the flap through an adjustable linkage to vary (Cm6f) w. Since this section of the ele-

vator moved in phase with the flap, it could be considered to add directly to the flap

pitching moments. Provision was made to vary the downwash due to flap deflection
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_e/85f by splitting the trailing-edge flaps into two sections. The small inboard portion

could be geared to the outboard section with a ratio between 0 and +1.0. The outboard

section of the landing flaps was connected to the ailerons so that in the alleviation mode

the outboard flaps and ailerons moved together symmetrically for gust alleviation and

differentially for lateral control. The flaps were redesigned structurally to allow full

deflection in either direction at any speed within the capabilities of the test airplane.

Landings were made with flaps up for the test program, but in case a practical gust

alleviator should be designed, the additional problem of retaining the landing function of

the flaps would have to be solved. The inboard portion of the elevator remained con-

nected to the pilot's control stick. The critical requirement for elevator control was

getting the tail down for landing with the alleviation system locked. The elevator of

reduced area was adequate for this purpose with the center-of-gravity position used in

the tests and was also satisfactory for control in flight with the alleviation system in

operation.

Control system and safety provisions.- A two-stage electrohydraulic servomecha-

nism was used to operate the flaps. The system operated essentially as shown in fig-

ure 4, but the electrical outputs of the vane, control stick, and accelerometer could be

combined in any desired proportion as inputs to the servoamplifier. The flap position

was proportional to the amplifier input under steady-state conditions.

Lateral control in the alleviation mode was supplied through an additional hydraulic

servomechanism with mechanical input. The output of this system deflected the flap sys-

tem asymmetrically through a mixing linkage.

A problem which must always be considered in installing modified control systems

in an existing airplane is that of reversion to the original airplane system in case of any

failure. In the system under consideration, the pilot's control wheel remained connected

to the basic airplane controls through the original cable system. In the alleviation mode,

the airplane was flown from the copilot's side, and the pilot's wheel simply followed the

surface movements. In case of any malfunction, a separate hydraulic system was pro-

vided which could mechanically clamp the wing flaps in neutral and simultaneously dis-

connect the controls from the output of the hydraulic servomechanisms. Symmetrical

deflection of the ailerons in the alleviation mode was permitted by allowing the hydraulic

system to overpower preloaded spring struts in the aileron linkage of the basic airplane

control system. These struts had sufficient preload to allow adequate manual control of

the ailerons. When this system was being designed, electronic systems had a poor repu-

tation for reliability, and elaborate safety precautions were necessary. With the pres-

ent reliability and background of experience with electronic components, together with

techniques of redundancy, sufficient reliability could probably be provided in a system of

this type to avoid the need for these rather complex reversion systems.
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Structural feedback considerations.- A complicated problem which requires con-

sideration in the design of any automatic control system is the possibility that control

movements will excite structural vibrations which, in turn, will be picked up by the sen-

sors involved in the system and amplified through the servomechanisms to produce an

increasing oscillation. Such a condition is often termed "structural feedback," and can

lead to dangerous oscillations similar to control-surface flutter. Such a condition is

particularly of concern in the case of a gust-alleviation system because the wing flaps

produce a powerful aerodynamic force input, comparable in magnitude to that of a severe

gust hitting the airplane. With the present state of the art of servomechanism and flutter

analysis, an organization with sufficient resources could make a rational analysis of this

problem by taking into account the numerous vibration modes of the structure as well as

the rigid-body motions of the airplane. Such analyses, in fact, are made routinely for

many of our modern airplanes. A frequent objective of such analyses is the design of

"modal suppression systems," which serve to damp rather than amplify the structural

modes. Some mention of these systems is made subsequently herein.

In the case of the gust-alleviation system under consideration, however, modern

digital computing techniques did not exist, and safety could be assured only through con-

servative design techniques and cautious avoidance of potentially dangerous conditions.

As will be seen, this approach placed a penalty on the performance of the system which

could probably be avoided with a more complete analysis.

Ground vibration tests.- A rather complete set of ground vibration tests was made

on the test airplane to determine the frequencies and mode shapes of the primary struc-

tural modes. The lowest natural frequency of the structure was the first wing bending

mode at 8.0 cycles per second. Inasmuch as this frequency was considerably above the

frequencies which might be suspected of producing motion sickness (see fig. 2), the flap

servomechanism was designed to have its response highly attenuated at 8.0 cycles per

second so that interaction with the structural mode would be unlikely. This attenuation

was also increased by velocity saturation of the servo which would provide still more

attenuation at larger input amplitudes. Thus, if any oscillation should start, its amplitude

would be limited.

Frequency-response tests.- Rather complete frequency-response tests were also

made on the control system. In these tests,a sinusoidal voltage simulating output of the

vane synchro was applied to the servoamplifier. The resulting motion of the flaps,which

were spring loaded to s!mnlato the aerodynamic hinge moments acting in flight,was

recorded. By combining the results of the ground vibration tests and the servo frequency-

response tests,an approximate analysis could be made to determine the possibilityof

instabilitycaused by structural feedback. For the vane-controlled system, this possibility

was found to be remote because wing bending caused very littleresponse of the structure
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at the location of the vane. With an accelerometer pickup, however, a more rigorous

analysis would be required to draw any definite conclusions. The acceleration at any

point undergoing structural vibration increases as the amplitude and as the square of the

frequency. For this reason, higher frequency modes which may appear to have small

amplitude can result in a large accelerometer output. In conducting flight tests with the

accelerometer-controlled system, the gain of the accelerometer signal was gradually

increased from zero while the pilot applied pulse input disturbances to the flap system.

The gain was then limited to a value which gave a well-damped response.

Measurement of aerodynamic parameters.- In order to calculate linkage ratios and

gain settings to be used in the flight tests, rather complete aerodynamic data on the air-

plane were required. These data may be obtained most accurately by using a combina-

tion of flight tests and analytical procedures. In the case of the airplane under considera-

tion, values of the derivatives CZ_ , Cm_ , and the sum of the damping derivatives

Cmq + CmD_ could be obtained by analyzing the records from abrupt pull-ups produced

by step or pulse inputs to the elevator. The value of _e/_ was obtained from available

empirical data based on wind-tunnel measurements. A knowledge of this value allows

separation of the values of Cmq and CmD. In a similar manner, values of the flap

lift and moment derivatives were obtained by applying step inputs to the full-span flap

through the gust-alleviation servo. Again, estimates had to be made of the downwash due

to the flaps _e/Sf and of the effects on downwash of the inboard flap gearing.

Method of flight testing.- Flight testing of a gust-alleviation system is difficult

because the characteristics of the gust input are not under the control of the experi-

menter. If an isolated, reproducible gust could be found, the problem of flight testing

would be simplified. Unfortunately, the atmospheric turbulence is of a random nature

and stretches of continuous turbulence are rare, particularly in favorable weather condi-

tions. In a conventional airplane, the pilot can give a subjective judgment of the severity

of turbulence by noting the magnitude of accelerations experienced, but in testing a gust-

alleviation system a smoother ride might result either from an effective system or a

decrease in the intensity of turbulence. For these reasons, measurements of the turbu-

lence input as well as the airplane response must be made. Vertical gust velocity is

measured from the indications of an angle-of-attack vane corrected for motions of the

airplane as measured by an accelerometer and pitching-velocity recorder.

Spectral-analysis techniques.- Because of the random nature of the turbulence,

power-spectral analysis of the data is required. By this technique a time history of a

randomly varying quantity, such as vertical gust velocity, is converted into a plot showing

the square of the amplitude of each sinusoidal component of the quantity over a small

range of frequencies against the frequency. In order to obtain an accurate power spec-

trum, the sample length should be about 20 times the wavelength of the lowest frequency
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component being studied. Furthermore, the process is assumed to be stationary over

this entire period; that is, the process producing the turbulence is assumed to remain

constant over the sample period. Unfortunately, atmospheric turbulence is rarely a sta-

tionary process, and patches of smooth air or turbulence of different magnitudes are

encountered at frequent intervals. As a result, power-spectral analysis rarely yields

results having the degree of accuracy of more conventional flight measurements.

At the time the flight tests of the gust-alleviation system were started, power spec-

tra were obtained by using an analog device which required transferring the flight data to

magneUc tape and then running the tape as a continuous loop through a series of tuned

filters to determine the frequency content. Later in the test program, digital computa-

tion techniques were used, though the computer time required for these analyses was

quite long. More recently, improved methods of spectral analysis, sometimes called

FFA (fast Fourier analysis), and higher speed digital computers make the determination

of spectra considerably faster.

Characteristics of atmospheric turbulence.- A few typical results from the flight

program are now shown. The power spectrum of atmospheric turbulence, as indicated

by the gust angle of attack, is shown for two runs in figure 14. Typically, power spectra

are plotted on log-log paper to allow coverage of a wide range of the variables under con-

sideration and of frequency. The quantity of the ordinate scale, in this case degree2/cycle

per second, is squared because the definition of power spectrum, which had its origin in

the measurement of the resistive power loss of electric current in a resistor (I2R),

requires that the square of the magnitude of the harmonic content be plotted. From the

engineer's viewpoint, the log-log paper tends to mask differences between different spec-

+_.,_, whereas the squaring of the ordinate tends to exaggerate them. Thus, care is

required in evaluating the true physical significance of quantities plotted in this way.

The data for the basic airplane cover a range of frequencies from 0.05 to 10 cycles

per second, which at the test airspeed of 220 feet per second (67.06 meters per second),

corresponds to a range of gust wavelengths of from about 4400 feet (1341.12 meters)

down to 22 feet (6.71 meters). Over this entire range the power spectrum shows a nega-

tive slope of about -2. This value is typical of the spectrum of atmospheric turbulence.

According to the theory of isotropic turbulence, the slope should be -5/3, but the accuracy

of spectral determinations is not good enough to distinguish readily between the two val-

ues. The slope of -2 means, physically, that the actual amplitudes of gust velocities vary

with increasing frequency furnishes another reason why, in the design of a gust-alleviation

system, the low frequencies are often important and cannot, in any case, be neglected.

Flight test results.- A comparison of the power spectra for the normal acceleration

for the basic airplane and for the airplane with a vane-type gust-alleviation system is
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shownin figure 15. Note that these dataare for slightly different atmospheric conditions
andthe results shouldnot be compareddirectly. Also, the conditions are not those given
in figure 14. Two points of interest are apparent, however. First, the alleviation system
has little effect at frequencies aboveabout2 cycles per second. This result may be
attributed to the attenuationof the responseof the flap servomechanismat high frequen-
cies. Second,the wing bendingfrequency showsup as a slight peak at 8 cycles per sec-
ond. Becauseof the small magnitudeof the gust input at this frequency, however, the
responseis quite small.

In order to comparethe responseswith the alleviation system on and off, the values
of the power spectra of normal acceleration were divided by the values of power spectra
of gust angleof attack at corresponding frequencies, andthe square root of the result was
taken. The result is a plot of the ratio of normal acceleration to gust angle of attack as a
function of frequency, similar to that obtainedfrom the frequency-response analysis.
This result as well as similar data for pitching velocity are shownin figure 16. In the
frequencyrange of greatest interest for passengercomfort, for example0.2 to 0.5 cycle
per second,the acceleration responsewas cut to abouthalf that of the basic airplane.
For the particular caseshown,the pitching-velocity responseof the basic airplane was
reducedalso.

The results shownare typical of those for various cases studied. In general, the
trends in the results causedby varying the gearing betweenflaps and vane, inboard and
outboardflaps, or betweenflaps andauxiliary elevators, were in goodagreementwith the
predictions of the theory. The maximum alleviation obtained,however, was somewhat
disappointinginasmuchas the theory indicated that the response couldbe reducedto a
much lower value. The primary reasonfor this limitation in the effectiveness of the sys-
tem is believedto be the attenuationof the flap responseat high frequencies and, in par-
ticular, thevelocity saturation characteristic which had beenincluded as a safeguard
against flutter. In detailed examinationof the time histories of response to turbulence,
the flaps could be seento lag behind the desired motion whenevera particularly large
gust input was encountered. The result of this lag was a peakin the acceleration response
causedby the failure of the flap to offset the gust completely. In retrospect, it appears
that a servomechanismwith more nearly linear characteristics and higher frequency
responsecould havebeenused wiAhsafety. The resulting alleviation wouldhavc more
closely approachedthe theoretical predictions.

Work of Ren_ Hirsch in France.- No r_sum_ of flight experience with gust-

alleviation systems would be complete without mentioning the work of a Frenchman, Ren_

Hirsch, who has apparently devoted much of his life to this subject. About 1938, Hirsch

completed a thesis on analysis and model tests of a gust-alleviating airplane. In this era,

when servomechanisms were in an early state of development, Hirsch was forced to rely
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on aerodynamic forces to actuate his system. He conceived the idea of using forces on

the horizontal tail, which was mounted with freedom of vertical movement, to operate

trailing-edge flaps on the wing through a direct mechanical linkage. The use of a sur-

face aft of the wing to detect the gusts might at first seem illogical, but, as has been

shown, the long-wavelength gusts are the ones of greatest importance. For these gusts,

little difference in phase relationship exists between the flap motion and the gust whether

the gust is sensed at the nose or tail of the airplane. The recognition of the importance

of long-period disturbances was one area in which Hirsch showed greater insight than

most of his contemporaries.

Hirsch also recognized the need to restore pilot control when the lift of the airplane

was made insensitive to angle of attack. This ability followed naturally with his setup

because, with conventional elevators on the horizontal tail, a rearward stick movement

would raise the elevators, putting a down load on the tail, and thereby moving the flaps

down. The effect was identical to that obtained in the vane-controlled system discussed

previously by feeding a signal from the control stick to the flap servomechanism. Hirsch

also showed how to design his system to give approximate compensation of horizontal

gusts. As a bonus, as his airplane slowed down, the elevators would be raised and the

flaps would automatically go down to their landing position. The same effect could be

obtained on the vane-controlled system by spring loading the vane in the downward direc-

tion. Hirsch made a remarkably complete analysis of the static characteristics of his

system by taking into account the hinge-moment derivatives due to deflection and due to

angle of attack of the many movable surfaces on his design. At the time of this analysis,

these concepts were quite new. In addition, he made a wind-tunnel test of a dynamic

model of his airplane. The model was mounted in the tunnel with freedom to move ver-

tically and was subjected to a gust produced by a venetian-blind arrangement ahead of the

model. He showed that the model with surfaces fixed would bang against the top of the

tunnel under the influence of the simulated gust, whereas the alleviated model was rela-

tively undisturbed. This type of dynamic model testing of partly restrained models was

years ahead of its time and has come into wide use more recently for flutter model testing.

Hirsch's work was apparently interrupted by World War II, but after the war he

further demonstrated his concept by constructing a small clean twin-engine airplane

which incorporated his system. A photograph of this airplane is shown in figure 17, and

a line drawing showing the interior arrangement is shown in figure 18. Reports

_l_a,_+h+ncr fllcThf t_t_ nf tho _irnlnne are aiven in references 15 and 16. The proper

operation of this system might be a subject of concern because of the number of hinged,

moving, aerodynamically actuated parts. Hirsch used a double-hinged flap to obtain

greater lift increments and linearity of hinge moments. This flap was actuated by the

horizontal tail, which changed dihedral about chordwise hinges at the root. Not satisfied

with alleviaUng vertical gusts, he also detected rolling gusts by hinging the wing tips
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about a chordwise axis andusing thesesurfaces to deflect the flaps asymmetrically.
Finally, to restore aerodynamicdampingin roll andpitch to the airplane, he incorpo-
rated large bellows-type actuators operatedby dynamic pressure and controlled by wind-
driven rate gyroscopes. Hirsch had suchconfidencein his system that hedesignedthe
airplane to a load factor of 2g, taking advantageof the saving in wing weight to improve
performance.

Despite the complex-soundingfeatures of the design, the system was well engi-
neeredandthe airplane mademany successful flights. Tests were madewith recording
instruments andthe results, presented in the form of time histories, showthat the degree
of gust alleviation attained wasvery similar to that of the NACAairplane.

RECENTDEVELOPMENTS

Despite the promising results obtainedwith two of the gust-alleviation systems
described, nopractical use of systems to reduce the accelerations associatedwith the
rigid-body responseof airplanes has beenmade. This lack of practical application in
modern airplanes probably results from two considerations. First, as airplanes were
designedfor higher speedsand employedthinner wing sections, the structural frequencies
decreased. The problem of providing adequatealleviation in the range of frequencies of
interest for passengercomfort without exciting structural modestherefore becamemore
difficult. Second,as jet airplanes flew at higher altitudes, they encounteredturbulence
less frequently and the problem was therefore less serious. Increased application of low-
altitude flying for short-haul service, using STOL-type airplanes with light wing loading
may bring abouta revival of interest in this form of gust alleviation. At the other endof
the speedrange, the supersonic transport, becauseof its slender shapeand thin surfaces,
requires increased attention to the designof automatic control systems to improve the
dampingof structural modesof oscillation.

In recent years, the gust-response problems of high-speedmilitary airplanes have
received renewedattention. Fighter airplanes flying near sea level at high subsonic
speeds,andtherefore at high dynamic pressure, cansubject the pilot to a very rough ride.
The larger military airplanes, both bombers and transports, have suffered from fatigue
problems, often as a result of service flying hours far exceedin_the original designval-
ues. Sincethe life is largely determined by frequently repeatedgust loads of all ampli-
tudes, meanshavebeensoughtto alleviate these loads. In some of the newer proposed
supersonicaircraft designs, the long, slender fuselages havebeenfoundto contribute to
excessivevibration at the pilot's station.
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Fighter Airplanes

Various methodshavebeenstudied and testedto help solve these problems. In the
case of the subsonicfighter airplane, the relative density factor is so great that the
short-period longitudinal oscillation has a relatively long wavelength,perhaps 1000to
1500feet (304.8to 457.2meters), where the gust input amplitude is becominglarge. If
the airplane has poor dampingin pitch, resulting in a resonancepeak at the short-period
frequency, the use of a pitch damper may considerably reduce the response, both in pitch
andin normal acceleration. The use of high wing loadingand wingswith low aspect ratio
or high sweepangle to reduce the lift-curve slope may also bebeneficial. These tech-
niquescan reducethe accelerations to only a certain point, however, before they start to
interfere with other desired performance characteristics.

As a general rule, trailing-edge flaps, particularly on the outboardportion of the
wing, are unsuitablefor providing gust alleviation ona high-speed fighter airplane. At
high-dynamic-pressure conditions, such surfaces are usually approachingtheir reversal
speed. Even if they remained effective, they are generally so far aft of the center of
gravity that they produce excessivepitching moments. Inboard flaps on a sweptwing
might avoid this problem, but ona low-aspect-ratio or delta-wing configuration they
would still be likely to give excessivepitching moments. As shownpreviously, such
pitching momentsmust be offset by deflection of the horizontal tail, which would largely
offset their effectiveness by producing lift in the oppositedirection. Perhaps the most
promising methodto provide effective gust alleviation on a high-speed fighter airplane
wouldbe to deflect the wholewing. A wing deflection of only 1° would, at a speedof
1000feet per second (304.8meters per second),be enoughto offset the effect of a 17-foot-
per-second (5.2-meter-per-second) gust.

The foregoing conceptleads to the following arrangement which would appear to
offer promise as a gust-alleviation system for a high-speedfighter airplane. A variable-
incidence wing, operated through a rapid-response servomechanismin accordancewith
the outputof a vane or similar sensor, would offset the effects of the gusts on the wing.
The wing itself would producesmall pitching momentsaboutthe center of gravity. To
offset the gusts and downwasheffects at the tail, the use of a highly effective pitch damper
operating from a rate gyro wouldappear preferable to a device which varied the stabilizer
incidence, with the appropriate lag, in response to the gust sensor signal. This arrange-
ment would avoid critical dependenceof the longitudinal stability on the tail-to-sensor
gain constant. A system of this type has not yet, to the writer's knowledge,beena,_a-
lyzed. Any such analysis should, of course, include effects of structural modeswhich
might be excited by the system.
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Large, Flexible Airplanes

Frequently, large bomber or transport airplanes are equippedwith stability aug-
mentation systems to improve the dampingof the short-period longitudinal modeor the
Dutch roll mode. These systems are designedto operate over a limited frequency range,
or bandwidth,to avoid interaction with higher frequency structural modes. In some
cases,however, excessiveshaking of the cockpit hasbeenexperiencedin flight through
rough air, thereby making it difficult for the pilot to read his instruments. Also, as
noted previously, fatigue damageto the structure hasoccurred becauseof repeated
stresses causedby flying throughmild or moderate turbulence. Several analytical and
flight projects have beenundertakento developsystems to alleviate these effects. These
projects have beengiven various acronyms, suchas GASDSAS(gust alleviation and struc-
tural dynamicstability augmentation),LAMS (load alleviation andmodal stabilization),
and others, which may be seenin the literature (refs. 17 to 19).

Thestructural modesof a flexible airplane usually havevery low damping,with the
result that a spectrum of the responsecarried out to high frequencies will usually show a
series of sharp peaks,oneat each major structural mode. The object of modal suppres-
sion systems hasbeento improve the dampingof thesemodes, thereby cutting downthe
peaks,without interfering with the rigid-body modes or the operation of the existing sta-
bility augmentationsystem.

Becausethe sensors and servos used in a modal suppressionsystem must operate
out to high frequencies, the probability of reducing the dampingof a structural modeor
producingflutter always exists. Suchsystems must therefore be analyzedin detail. The
stability equationsfor suchsystems are systems of linear differential equationssimilar
to thoseof the basic airplane, but of higher order andtherefore more complicated. The
needto provide satisfactory dampingof the structural modes for widely varying flight
conditions andaircraft loading further complicates the designproblem. General rules
for the designof suchsystems cannotbe formulated becauseeach airplane presents
special problems. A few considerations which may aid in arriving at a preliminary
design can,however, be presented.

In order to sensestructural modesindependentlyof the rigid-body motions of an
airplane, it is possible to employ the difference in the outputsof two sensors. For
example,by taking the difference betweenthe outputs of accelerometers at the center of
gravity andat the rear of the fuselage, the rigid-body normal acceleration may be elimi-
nated, thereby leaving a signal proportional to pitching acceleration plus the contribution
of structural modes. If the difference betweenthe outputs of pitching accelerometers is
used, the only signal remaining is that dueto structural modes. Combinationsof sensors
at various locations may be usedto emphasizethe contributions of particular structural
modes.
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In order to be effective in dampinga particular mode,both the sensor and the con-
trol surface must be affected by that mode. In other words, the force exerted by the con-
trol surface must move through a distance so as to perform work in dampinga particular
mode. This problem is illustrated in figure 19. Thevarious modeshave different nodal
points and different directions of displacementat anygiven location. As a result, an
instrument providing a stabilizing signal to onemodewill most likely destabilize some
other mode. This dilemma has resulted in the schemecalled ILAF (identical location of
accelerometer andforce). By locating an acceleration sensor as close as possible to the
control surface which it operates, at least the direction of the acceleration andthe
resulting dampingeffect on the structure will alwaysbe consistent, regardless of which
modeis excited. If a given control surface is at the nodalpoint of some modes,however,
it will be ineffective in dampingthesemodes. The useof another control surface may
therefore be required. Small auxiliary canardsurfaces near the cockpit havebeenshown
to be effective in dampingfuselagevibrations. Suchsurfaces were tested in the XB-70
program.

DISCUSSIONOF ASSUMPTIONSOF THEORY

The assumptionsmadein the theoretical analysiswere listed previously. The
methodsof extendingthe analysis to remove someof theseassumptionsare nowdis-
cussed. Someremarks havebeenmadepreviously on the methodsfor including lateral
motions in the analysis and of the effects of variations in configuration and of structural
flexibility. This section includes consideration of the effects of speedvariations, hori-
zontal gnsts, unsteadylift effects, andisotropic turbulence.

SpeedVariations

The effect of including speedas an additionaldegree of freedom is the introduction
of the long-period, or phugoid,modein the airplane response. The phugoidmodehas
low dampingand canbe readily excited by gusts, but experiencehas shownthat the human
pilot with suitable instruments and external references has nodifficulty in controlling this
modeof motion. The pilot's ability to control this motion is likely to be equally goodin
the caseof a gust-alleviated a2rplanewhenadequatemeansare provided to control the
flight path. Furthermore, the changesin normal acceleration associatedwith this long-
period mode are small. The omission of this degreeof freedom, which is equivalent to
the assumptionthat the speedis constrained to a constantvalue by the pilot, is therefore
justified in studies primarily concernedwith acceleration alleviation.
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Horizontal Gusts

The relative magnitudesof the lift increments dueto horizontal andvertical gusts
may be determined as follows: The lift may be expressedby the formula

For a vertical gust,

therefore

L = aCLa _ V2S

Wg.
ag = -_--, the change in lift due to a gust of this magnitude is

Z_LV = w_CT --pS
"or2

For a horizontal gust, when the airplane is flown at the lift coefficient C L

_L H = C L _ 2VugS

The ratio of lift increments is therefore

AL H 2C L

_L V CLa

For cruising flight, with C L _- 0.25 and CLa 5.0 per radian, the ratio AL H L V

is about 0.1. The horizontal gusts are therefore relatively unimportant in this condition.

In landing approach, with C L = 1.0, the ratio may reach about 0.5. For a STOL airplane

operating at C L = 4.0, however, horizontal gusts become more important than vertical

gusts in affecting the motion of the airplane.

Unsteady Lift Effects

Though unsteady lift effects were neglected in the theory presented previously,

early analyses of response to gusts placed undue emphasis on this aspect of the theory,

often completely neglecting important factors such as the pitching response of the air-

plane. The reason for this trend was the desire to calculate response to discrete, sharp-

edge gusts for determination of design loads. In the theory presented, lift is assumed to

appear instantly when the angle of attack changes or the flap is deflected. The result of

this assumption, from the frequency-response viewpoint, is to cause the transfer function

relating normal acceleration to gust angle to maintain a constant value as the gust fre-

quency approaches infinity (see fig. 6). In practice, the response would be attenuated at

high frequencies because of the lag in buildup of lift. This attenuation does not become

appreciable, however, until frequencies beyond those associated with the rigid-body
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motion of the airplane are reached. In the caseshownin figure 6, the responsewould
not be reducedby 50percent until a frequency of about6 cycles per second. As shown
subsequently,the effect of gust variations across the span causesthe lift to beattenuated
at a considerably lower frequency. The reduction in the input amplitude with increasing
frequencyin atmospheric turbulence further reducesthe needfor refinement of the cal-
culations at high frequencies. It may be concluded,therefore, that for considerationof
rigid-body motions, sucheffects may be safely neglected. In calculations involving
higher frequency effects, suchas flutter, penetration of sharp-edge gusts, excitation of
structural modes,andso forth, unsteadylift effects shouldbe considered.

Isotropic Turbulence

Whenanairplane is flying through roughair, it has beenfound that the disturbances
are similar whether the airplane flies on a north-south or east-west course. The math-
ematical model of turbulence of this type, called isotropic turbulence, is generally thought
to be a goodrepresentation of actual atmospheric turbulence. A somewhatmore exact
description of this conceptis therefore desirable.

In order to visualize the conceptof isotropic turbulence, it is better to consider the
observer to be at rest with respect to the general air mass, as if hewere in a balloon,
rather than flying through it as in an airplane. If the observer feels a gust, he would
assume that for somesmall distance in his vicinity the gust velocity wouldbe approxi-
mately the same. At a point a great distance away,however, the gust velocity would
probably have no relation to the gust velocity that hewas feeling. The relation between
the two gust velocities as a function of the distancebetweenthe points of observation is
knownmathematically as the correlation function. The definition of the correlation func-
tion is shownin the following sketch:

_wg = _l f Ss_g(x)_g(_+ s)_

To be more exact, the gust velocity must be resolved into components along and perpen-

dicular to the line joining the two points in question. The correlation function for the gust

components along the line is ca!!ed the longitudinal correlation function; that for gust com-

ponents normal to the line and lying in the same plane is called the transverse correlation
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function. The theory of isotropic turbulence showsthat these two correlation functions
are different but related. Return nowto the definition of isotropic turbulence. The tur-
bulenceis said to be isotropic if thesecorrelation functions dependonly on the distance
betweenthe two points andnot on the direction of the line joining the two points.

As shownin textbooksdealing with random processes (see ref. 20, for example),
the correlation function is related to the power spectrum, the power spectrum being the
Fourier transform of the correlation function. From the dataon the power spectrum of
atmospheric turbulence, therefore, the correlation function may be derived or vice versa.

Calculation of Lift on a Wing in Isotropic Turbulence

Theassumption that the gust velocity is constantacross the wing spanmight be
thoughtto bevalid for gust wavelengthsthat are long comparedto the span. For wave-
lengths that are short comparedto the span,however, the probability is goodthat if the
gust velocity is varying along the flight path, it will also bevarying across the span. The
resulting lift of the wing will be reducedin amplitude as compared to that calculated on
the basis of a constantgust velocity across the span. The effect of the varying gust
velocities across the spanwill be averagedby the wing, hencethe term "spanwise aver-
aging effect."

A rigorous calculation of the statistical or probablevalue of the lift variations on
the wing as a function of gust wavelengthin isotropic turbulence can bemade by using
formulations basedon either power spectra or correlation functions. The power-spectral
approachis explainedin reference 1, chapter 10. It is thought, however, that the approach
basedoncorrelation functions is somewhateasier to understand. This methodis there-
fore described.

Thepower spectra or correlation functions measuredby a small sensor, such as a
vane, traversing the atmosphere, havebeencalled "point correlation functions." As an
airplane flies through the air, it is influenced by gustvelocities in a two-dimensional
region definedby the flight path andthe wing span. The power spectra or correlation
functions for the wing lift variations have therefore beencalled "two dimensional." If
considerationsare again restricted to the effect of vertical gust velocities, the correla-
tion function relating the gust velocities at any two points in this plane canbe seen to be
the transverse point correlation function. This is the correlation function which may be
derived from vane measurementsas the airplane flies through the turbulence, but in
accordancewith the assumptionsof isotropic turbulence it is applied to obtain the cor-
relation betweengust velocities at any two points in the planar region swept out by the
wing.

The expression for the lift on a wing subject to spanwisevariations of vertical gust
velocity at any point in a two-dimensional turbulence field is shownin the following sketch:
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X

N b/2_

Fb/2
L(xl) :_-b/2 7(Y)Wg(_l'Y)_

In this expression ),(y) is the spanwise lift distribution on the wing owing to a uniform

angle of attack of unit magnitude. According to a theorem in linearized airfoil theory

(ref. 21), the total lift on a wing with any arbitrary distribution of angle of attack may be

obtained by multiplying the angle of attack at any spanwise station by the value of 7(Y)

at that station of the wing in reverse flow and integrating the result across the span.

For an unswept wing, the reverse-flow provision may be omitted.

The method for determining the correlation function for the lift on a wing traversing

a two-dimensional turbulence field is to write the expression for the lift at two points

along the path. These expressions are then substituted into the formula for the correla-

tion function to obtain the correlation function for the lift. By changing the order of inte-

gration, this expression may be shown to contain, as one term, the known transverse point
44-hcorrelation function for vertical gust velocity. W .... this knowledge, the resulting integral

may be evaluated. These steps are

_b/2
L(x) : J-b/2 _,(y)Wg(X,y) dy

b/2 ..i .... i d,y) dy
L(x + d) = -b/2 r_y)Wg_X +

S-.oo

L(x)L(x + d) dx

1 S S fb/2 fb/2=  (yl)%X,yl)
S--oo

+ d,Y2) dy 2 dx
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By changingthe order of integration

,L(d) =
b/2 -b/2

84o

dyldy2

Note that the term in the brackets is the point correlation function for vertical gusts.

Perhaps the hardest point to understand in the derivation is the realization that the

argument of the point correlation function appearing in the expression is the diagonal

distance, or hypotenuse, of a triangle defined by points separated a distance d along

the flight path and a lateral displacement Y2 - Yl across the wing span. As shown in
the following sketch:

the two vertical gusts appearing in the correlation function are separated by the distance

(Y2 - Yl) 2 + d2" If an expression for the point correlation function is assumed, such as

_w(_) = e-K_2, which may be plotted as shown in the following sketch,

then it is only necessary to substitute the expression for the hypotenuse as the argument

of this function and to evaluate the integral involving this function. The point correlation

function following this substitution is

1_w = e
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Hencethe correlation function for lift is

?j2?j2
_L(d)= -b/2 -b/2 7(Yl)7(Y2) e dY 1 dY2

The power spectrum of wing lift may be derived from the correlation function if desired.

This work has been carried out for various assumed point correlation functions and for

several wing planforms in reference 22.

An example of these results is shown in figure 20. This figure shows the power

spectra of effective vertical gust velocity _bWe which, when considered constant across

the span, will give the same lift as the actual randomly varying gust. The curves may

therefore be considered proportional to the power spectra of wing lift. The curve for

b
= 0 represents the point spectrum, inasmuch as the wing in this case has a span

L*

approaching zero. The main effect of finite span is seen to be a more rapid decrease of

the higher frequency components of the lift. The value of b/L* of 0.25 (the smallest

value shown), however, is probably much too large for actual airplanes in view of the

large scale of atmospheric turbulence determined from flight measurements. A value of

b/L* of 0.05 would be more representative of actual conditions.

The calculation of the spanwise averaging effect has several implications for gust-

alleviation systems. As stated previously, the lift reduction due to this effect may

_,_o,,,_ important at a lower frequency than that due to unsteady lift effects. The effect

is still small at the usual rigid-body frequencies, but it may be important in the range of

wing structural frequencies. In calculations of structural response to gusts, therefore,

the effects of isotropic turbulence should be taken into account.

While this paper has concentrated on longitudinal response, the lateral response of

an airplane is also of interest. The assumption of constant gust velocity across the span

may be adequate for the longitudinal analysis, but for calculations of lateral response it

is obvious that the inputs due to rolling gusts would be missed completely by this assump-

tion. Several reports are available in the literature showing how to take into account the

effects of isotropic turbulence in calculating the rolling moments, yawing moments, and

1_.+._..._I v .... _ _,_flner nn _ ._i_.nl_n,_ in fli_hf fhvnn_h igntrnnic turbulence (refs. 2 and 23}.

The consideration of the statistical nature of turbulence also makes it clear that

perfect gust alleviation such as could be predicted by the simplified theory cannot be

obtained in practice. The gust sensed by a vane on the center line of the airplane may

differ from that acting on various parts of the wing and the resulting flap motion may not

be exactly that required to counteract the gust. Some filtering of the high-frequency
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inputs to the vane would be desirable because these gusts are less likely to be constant

across the span. An interesting problem in optimal control theory, which to the writer's

knowledge has not been solved, would be to calculate the filter characteristics to provide

optimal gust alleviation, taking into account the location of the vane ahead of the wing, the

spectrum of turbulence, and the dynamic characteristics of the airplane and gust-

alleviation system.
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Figure 6.- Accelerations of transport airplane owing to sinusoidal gust

disturbance. Airspeed, 200 mph (89.4 m/sec).
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Figure 9.- Motions of airplane with vane-type acceleration alleviator owing to

sinusoidal gust disturbance.
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Figure 11.- Waterman's a i rplane incorporating wings attached t o  fuselage with skewed 
hinges. 
l i f t  force  i n  f l i g h t .  

Pneumatic s t r u t s ,  shown i n  extended and comgressed posi t ions;  balanced 
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Figure 12.- Twin-engine t ransport  a i rplane equipped f o r  gust-al leviat ion s tudies .  
Nose boom and vane ins ta l la t ion .  

Figure 13.- Twin-engine t ransport  a i rplane equipped f o r  gust-al leviat ion s tudies .  
Modified control  surfaces. 
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Figure 18.- Line drawing showing interior arrangement of airplane designed by Ren_ Hirsch.
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o HUMAN RESPONSE IN CLOSED-LOOP CONTROL

OF DYNAMIC SYSTEMS

By James J. Adams

Langley Research Center

ABSTRACT

This lecture describes a model matching method which has been used to determine

human response in controlling a wide range of vehicles. The use of the resulting models

of human response to determine the complete pilot plus vehicle system response is dis-

cussed. The implications of the results on system performance are discussed, and sev-

eral examples in which the answers to engineering problems are obtained are presented.

INTRODUC TION

The area of research known as human factors covers many topics. Some special-

ized topics, which are studied by psychologists, are studies of control compatibility,

reflex time, the effects of lighting on human performance, proper display arrangement,

and the corresponding eye movements of the subject. Other studies have a medical aspect

and cover detailed studies of muscle control, eye control, and the sensing ability of organs

such as the eye and the semicircular canals. In contrast to these detailed investigations,

there are studies of a much broader nature that attempt to define a man's decision-making

processes and the trade-off that he will make between utility and cost.

In the present study, an engineering view is taken of human response as related to

all of the topics listed previously, but it does not treat them with the same detail as does

the psychological approach. What is presented and defined is a linear transfer function

that describes a pilot's control movements in controlling a vehicle to some position or

direction which he has decided to be desirable.

The measurement of these transfer ftmctions is first described in some detail.

Next, samples of these transfer functions are presented to illustrate their nature. Finally,

several examples of the application of these transfer functions to obtain answers to engi-

neering problems are presented.

The use of linear functions to describe pilot response is maintained throughout the

discussion so as to allow the use of linear analysis methods. The advantage of being able

to use the very powerful and thoroughly developed linear methods of analysis is believed

to be greater than the small advantage that might be derived from using nonlinear repre-

sentations of pilot response, which would provide only a slight improvement in the repre-

sentation of the pilot.
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SYMBOLS

inertia, slug-ft 2 (kilogram-meter 2)

gravity, ft/sec 2 (meters/sec 2)

distance between pilot center of gravity and vehicle center of gravity,

ft (meters)

K

m

gain (or coefficient)

mass, slugs (kilograms)

S

T

Laplace operator, per second

thrust, lb (newtons)

time, sec

X

X

body reference axis

displacement, ft (meters)

O/ general pilot gain

control deflection, radians

displayed error, volts

damping ratio

T

¢0

attitude angle, radians

pilot log coefficient, radians/sec

frequency, radians/sec
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Subscripts:

c command

P pilot

V vehicle

1,2 particular gains, as noted in text

Dots over symbols denote differentiation with respect to time.

REVIEW

A review of linear analysis is given by considering a simple problem. Given is a

single-degree-of-freedom body, with inertia I and a pointing requirement as illustrated in

figure 1. The line labeled 0c represents the line to some target at which the vehicle

axis X must point. The first element of the control system to be considered is illus-

trated with a spring, which is assumed to be adjusted so that the vehicle will tend to point

toward the target. The dynamic equation of motion of the system is then

Torque = I_"

= _Wc - _]

where K is a spring constant. The equation can be written in Laplace notation, where

the operator is used to denote differentiation

Is2O = K(O c - _)

or rewritten as

The term in parentheses is known as the auxiliary equation, or the system characteristic

equation. The time-domain solution of the differential equation is known to be
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However, the usual approachis to determine the roots of the characteristic equation. An
imaginary root indicates anoscillatory system for which the frequency is given by

This system undampednatural frequency is an excellent indicator of the nature of the
system responseand is often used in engineering discussions to describe the system.

A time history of the system response to an initial error is given in figure 2.
Sincethe motion of the system doesnot dampout, it is not a satisfactory system, and
dampingmust be added. The addition of dampingis illustrated in figure 3 with a dashpot.

The system equationis now

where K2 is the dampingcoefficient. The system characteristic equationis now

K2 K
s2 +]--s +T =0

The characteristic that is determined from this equation for engineering discussion is the

damping ratio _, where

The ideal damping ratio is 0.7, which is a compromise between a system response that is

too oscillatory and one that is too sluggish. A time history of system response to an ini-

tial error when the system damping ratio is 0.7 is illustrated in figure 4.

From consideration of performance (that is, for a system that provides a quick

response to commands and has the lowest possible error in the presence of external

disturbances), it is desirable to have as high a system frequency as possible as well as

a damping ratio of 0.7. However, practical considerations usually limit the system fre-

quency that can be achieved. One of these considerations is control lag.

In a practical system, static stability and damping are not supplied by springs and

dashpots such as were used for illustration in the preceding paragraphs. Rather, control-

torque-producing mechanisms which supply torque as a function of error and rate are

used. These mechanisms do not usually supply torque as a simple function of error and

rate but have some lag associated with their operation. The effect that such lags can have

on system response is illustrated by considering a system which has no damping:
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s 2 +Os + I =0

If the control is applied with a controller that is not perfect in its response but rather

responds with a first-order lag with a time constant of 1 second, the system character-

istic equation becomes

s2 +0s +.______1=0
s+l

or

s3+s 2+0s+l=0 (:)

which factors to

(s + 1.5)(s 2- 0.5s + 0.7)

and the quadratic factor indicates that the system is unstable, as shown by the negative

coefficient on s. This system would respond to a command or an external disturbance

with a divergent oscillation.

This example illustrates, in an exaggerated case, the effect of control lag on system

response. In a practical situation, where some damping was provided, the control coeffi-

cients, or gains, would be adjusted so that the system would be stable but the system fre-

quency would be restricted.

The system characteristic set down above is usually derived in a more mathemati-

cal manner. The equation-of-motion derivation is as follows:

The vehicle equation is

s20 = Kc5

where K c is the control coefficient and 8 is control deflection.

The control equation is

s6 = K 1 (5c - 6)

The command equation is

6 c = K2(0 c - 0)
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The characteristic determinant is then:

s 2 -K c 0 /

0 s + K 1 -K 1

1K 2 0

= s2(s + K1) + KcK1K 2

= s 3 + KlS2 + KcK1K 2

which can be seen to be equivalent to the example set down in equation (1).

From a block-diagram and transfer-function approach, the system characteristic is

derived as follows. The block diagram of the example system, with a first-order lag in

the controller and with no damping function provided, is shown in figure 5.

The system response is

K2(K1
0 ks + K1/s 2 K2K1Kc

0c +
S2(S + K1)+ K2K1K c

K2K1K c

s 3 + K1 s2 + K2K1K c

and it can be seen that the denominator is equivalent to the system characteristic equa-

tion set down in equation (1). The system characteristics expressed by the denominator

are known as the system closed loop characteristics.

HUMAN-MODELING TECHNIQUE

A human model should contain all of the control concepts discussed in the previous

paragraphs. A suitable model in transfer function form is

Output _ 5 _ K1 + K2s

Displayed error 0c - 0 (s + _)2

The numerator of this transfer function indicates that the model assumes a linear

response to displayed error and error rate. The second-order lag function indicated by

the denominator of the transfer function is predicated on the fact that the subsystem
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being described (namely, the pilot's arm and control stick) does have inertia and there-

fore a second-order type of response is required. The assumption of critical damping

that is implicit in the perfect-square form is made because it is the simplest reasonable

assumption that can be selected.

An analog diagram of the model is presented in figure 6. This compact analog

arrangement provides the following transfer function, which is slightly different from the

transfer function presented at the beginning of the section, but is not changed essentially:

5 = K1T + K1K2s

This model was matched to human pilots by automatically adjusting the gains K1, K2,

and _" in the following manner. In a suitable experimental setup, which provided a given,

measurable error signal to the pilot, this same error signal was used as the input to the

model. The pilot's output (his control stick deflection) was summed with the output of

the model to form a difference. To determine whether this difference was due to the

incorrect setting of any one of the gains in the model, the signal at that gain was taken,

transformed into the output form by the use of an approximate representation of the

remainder of the pilot's transformation, and compared with the difference to see whether

it was correlated with the difference. This correlation was performed by multiplying the

particular signal and the difference. H a correlation existed (the signal and the differ-

ence were in phase), the multiplier would have a biased output. This output was then

integrated, and the output of the integrator was used to provide an incremental change in

the particular gain. In this manner the gain settings are caused to run to a value that

minimizes the difference between the model and the pilot, and when the minimum is

achieved the best possible representation of the human has been obtained.

A mathematical derivation of this identification process is as follows: First it is

necessary to form a suitable function of the difference (diff) between the pilot and the

model which will have a minimum value for some particular value of a given gain, which

is called the gain _ for the moment. A suitable function is:

f(diff)= (diff)2
2

A plot of the variation of this function of the difference with _ is shown in figure 7:

steepest descent method can now be used to find the lowest point on this curve. The

method satisfies the equation

= -K Of(diff)
8or

A
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which indicates that if _ is causedto changeat a rate proportional to the slope of the
curve, then _ will seek the point where the slope is zero, andthus the minimum value of
the difference will be found.

The operational form of the steepestdescentequationis obtainedif the following
two transformations are made:

---- -K
0f(diff) a(diff)
a(diff)

& = -K(diff)

To illustrate the particular form of the last equation, take for example, the gain

the model

8(diff)_ (KlS)e

8K2 (s + 7) 2

K 2 of

However, for the model signal at K2, which is called

5' Kls

c (s + 7)2

5' (fig. 6)

Then, a substitution can be made

0(diff)_ KlS (s+7) 25, = 5'

8K2 (s + 7) 2 KlS

Thus, it can be seen that taking the model signal at K 2 and multiplying by the difference

gives a value for I(2. The value for I( 2 can be used to adjust K 2 to give the best

possible match to the human subject. Similar adjustment loops for K 1 and 7 can be

provided, and all three gains can be adjusted at the same time. A block diagram of the

gain-adjustment loops is shown in figure 8. A more detailed description is also given in

reference 1.

EXPERIMENTS

The automatic model-matching scheme described in the preceding section was used

to determine pilot response in a series of compensatory-tracking tasks. A block diagram
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of the task is shownin figure 9. A randomdisturbance was injected into the system as
shown. The pilot's task was to keepthe moving indicator onhis display alined as nearly
as possible with a fixed reference mark. This experimental arrangement was usedto
determine the effect of vehicle dynamics onpilot response. The different vehicle dynam-
ics tested are listed in table I. Also listed in the table to illustrate what these different
dynamics mean are the maximum acceleration, velocity, and displacementthat would
result with each dynamicsfor a step-control input.

TABLE I.- PLANT DYNAMICS

Vehicle transfer
function

Maximum values for a
10-volt step-control input

Acceleration,
volts/sec

Velocity,
volts/sec

Displacement,
volts/sec

1 co co i0

1

s+l

10

s2 + 3s + 10

2/s

10

cO

100

cO

i00

I

100

100

10

17

2O

100

cO

co

s(s + 1)

10

s2

10

s2(s + 1)

10

10

cO

cO

cO

cO

These dynamics are progressively more difficult to control for successive functions in the

10 represents a boundary for stable closed-loop control for a
list. The last one, s2(s + 1)'
human controller.

RESULTS

Typical gains measured in these experiments and the closed-loop-system charac-

teristics obtained by using the linear pilot model transfer function together with the linear
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transfer for the plant are presented in table II. The important points to notice from this
table are that for successive items downthe list of vehicle dynamics, the pilot's lag coef-
ficient 7 increases, andthe closed-loop oscillatory modeof motion frequency w and

damping ratio _ decrease. The decrease in w and _ indicates that system perform-

ance is deteriorating, and the normalized error c/disturbance measured in the experi-

ments verifies this deterioration.

TABLE H.- MEASURED PILOT GAINS AND CLOSED-LOOP CHARACTERISTICS

Dynamics

2/s

i0

s(s + 1)

10

s2

10

s 2(s + 1.5)

Measured gains

K1 rad/sec K2

6.5 4 0

5 10 3

8 15 5

12 28 30

Closed-loop characteristics

(A),

rad/sec

4.0 0.4

3.0 0.3

2.5 0.2

2.5 028.4 .99

e/disturbanc e
Real roots

-7.68 0.26

-6.3, -13.0 0.50

-10.0, -20.0 0.75

-1.0 1.0

If these pilot response data are to be applied to other dynamics which may be similar to,

but not exactly like, the examples tested, the following rules must be followed. Consider

the pilot-transfer function rearranged to the following form:

Determine the dynamics given in table II that is most nearly similar to the dynamics to be

studied. Take the corresponding value of T and lead time constant K2/T for use in

the model. Then adjust the static gain K1/T to provide the system-closed-loop fre-

quency indicated in the table. This model may then be used for whatever analytical study

it is desired to perform.

Factors other than the vehicle dynamics in the closed-loop system were also studied

for their effect on pilot response. These other factors are control sensitivity, display

sensitivity, and disturbance frequency. It was found that these factors had to be varied to
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extreme values in order to have a noticeable effect on pilot response. Additional infor-

mation on these factors can be found in reference 1.

In addition to the single-axis tasks, measurements of pilot response were also made

for multiaxis control tasks. In these multiaxis tasks, the pilot had to control pitch, roll,

and yaw attitude angles by using a two-degree-of-freedom control stick and rudder pedals.

As before, the pilot's gains were measured, and then the closed-loop-system character-

istics for each individual axis were determined. The vehicle dynamics used in these

tests were K/s 2 on each axis. The significant result of these experiments was that as

additional axes of control were added to the pilot's task, he altered his response so that

the system-closed-loop frequency was reduced. Some typical values for the pitch-axis

closed-loop natural frequency are presented in table III to illustrate this point.

TABLE HI.- MULTIAXIS-CLOSED-LOOP

OSCILLATORY CHARACTERISTIC S

Pitch axis alone .....................

Pitch axis in combination with roll ...........

Pitch axis in combination with roll and yaw ......

rad/sec

3.3

2.5

2.1

0.36

0.47

0.68

Additional information on these experiments can be found in reference 2.

To proceed to even more realistic and difficult control tasks, multiloop control situ-

ations were studied. The translation control of a jet supported lunar module or helicopter

is an example of the multiloop type of control situation. The variables involved are

shown in figure 10. In this situation translation x is controlled by manipulation of pitch

angle 0. Pitch angle, in turn, is controlled by operation of the attitude control system.

Thus, attitude control forms an inner loop around which an outer loop for translation is

closed. Consequently, the name multiloop task is appropriate. It has been determined

that pilot response in a multiloop-control task can be represented by two transfer func-

tions, located in series, with one transfer function in each loop. The block diagram of the

system is shown in figure 11.

It was found that the pilot transfer functions such as were measured in the multiaxis

tasks were suitable for the inner-loop pilot response. Then, by a trial-and-error matching

of time histories of translation response to a step change command, the outer-loop pilot

transfer function was determined. Typical pilot transfer functions, together with the
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vehicle transfer functions, for a multiloop lunar-module translation task are:

Inner loop:

Vehicle Pilot

0 0.5 = 2.67(1+ 0.41s)
= s(s + 0.5) e (1 + 0.167s) 2

Outer loop:

Vehicle Pilot

x = 5.36 0c 0.009(1 + 9.2s)

s 2 e (1 + 0.1s) 2

The system characteristics for the complete system are two oscillatory modes of motion

and four real roots, as shown in table IV.

TABLE IV.- MULTILOOP SYSTEM CHARACTERISTICS

Oscillatory

rad/sec

1.11

10.2

0.046

.99

Real roots

-0.167, -0.336, -4.75

-6.85

The high-frequency oscillatory root and the two large real roots are control modes of

motion and are not important to an understanding of the response of the system. The low-

frequency oscillatory root is the attitude mode of motion. The two low real roots are the

translation mode of motion, and they can be thought of as representing an overdamped

oscillatory mode of motion with a frequency of 0.24 radian per second. When the trans-

lation mode of motion is referred to in this manner, and its frequency is compared with

the frequency of the attitude mode of motion, it can be seen that translation is controlled

at a much lower frequency than is attitude.

Closing the outer loop around the inner loop also affects the characteristics of the

inner loop. H the inner loop alone is considered, its characteristics include an oscillatory

mode of motion with a frequency of 1.0 radian per second and a damping ratio of 0.26.

When the outer loop is closed around this inner loop, the attitude mode of motion is an

oscillatory mode of motion with a frequency of 1.1 radians per second and a damping ratio

of 0.046. Thus, it can be seen that in the complete system, the damping of the attitude

mode of motion is greatly reduced.
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It was also found necessary to include a limiter on the outputof the outer-loop
pilot model in order to represent the pilot properly. Both this limiter andthe low fre-
quencyof the translation mode of motion are reflections of the lack of tight (or precise)
control of translation as comparedwith control of attitude.

APPLICATIONS

Damper Failure Problem

If the pilot transfer functions which havebeenmeasuredare correct, they shouldbe
able to predict system performance. The closed-loop system characteristics, which
were calculated by using the measured transfer functions, are certainly very reasonable
and indicate that the measurementsare correct. A further checkof these measurements
has beenmadeby using the transfer functions to predict system response in new situa-
tions. Someof theseapplications are presentedto demonstrate that the models canbe
usedto provide engineering dataandto illustrate howthe applications are made.

The first application was in the useof the pilot models to confirm the system insta-
bility that occurs following a damper failure. The control task was the translation control
of a lunar module. Dampingstability augmentationwas included in the vehicle attitude-
control loop and, at a time ,,_known to the pilot, this augmentation was removed so that

a damper failure was simulated. The situation is illustrated in the block diagram of

figure 12, where the switch shown in the inner loop was used to simulate the damper fail-

ure. When human subjects were presented with this type of damper failure during a

1000-foot (305-meter) translation, as presented with a simplified simulator, the pilot-

vehicle .... *^--_y_=,,, became unstable. An example time history is shown in figure 13. A

divergent oscillation occurred after the damper failure, and the divergence continued for

approximately 15 seconds.

For the purpose of applying pilot models to an analysis of this situation, it was

assumed that the pilot would continue, for some length of time after damper failure,

controlling with the same transfer function that he had been using before failure. The

system was initially stable, of course, with system characteristics similar to those pre-

sented in the previous section on multiloop control tasks. When the inner-loop-vehicle

transfer function was changed from that representing a vehicle with damping augmenta-

tion K to one with no damping K/s 2, the computed system characteristics indi-
s(s + 0.5)

cated an unstable attitude mode of motion. _arther, when the inner-iuop pilot ,m,,,_-' was

then changed to correspond to measured pilot response with a vehicle with no damping,

the system again became stable.
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The fact that analysis made by using the pilot models does confirm the changes

from stable to unstable system response noted in simulator experiments with human sub-

jects shows that the models are correct and can be used in engineering analyses.

Langley Lunar Landing Research Facility

This section describes the application of pilot models to the design of a large, full-

scale, simulator to be used in the study of lunar-landing problems. The simulator was

designed to support 5/6 of the weight of the vehicle by means of an overhead cable, thus

simulating lunar gravity. It was necessary to keep the cable directly over the vehicle in

order to simulate lunar gravity properly. This simulation was to be accomplished by use

of a servomechanism to drive an overhead bridge in such a way that the cable angle would

always be controlled to zero. It was in the design study of this overhead drive system

that the pilot models were used. The block diagram of the system (fig. 14) shows the

multiloop translation-control system mentioned previously along with an additional

block representing the servo drive mechanism which would be present in the simulator.

Initial studies of the drive system by itself indicated that it could be adjusted to

have an oscillatory response which would have either a poorly damped 2.5-second

period or a well-damped 4-second period. The question that needed to be answered was

whether these characteristics would be in a range that would affect the response of the

complete man-vehicle-simulator system, and, if so, which would be the better to use.

Accordingly, the response of the complete system, in which models were used for

the pilot, was computed for a configuration in which no drive-system dynamics was

included and for the two configurations in which the drive system mentioned previously

was used. The response to a 200-foot (61-meter) change in position command is shown

in figure 15. Using the pilot-vehicle combination response as a standard for comparison,

it can be seen that both drive system configurations do affect the response of the system,

and that the high-gain system (the 2.5-second period characteristic system) affects the

response the least. From these results it was concluded that the drive system should be

adjusted to have as high a frequency as possible, and that, even so, the simulator would

be slightly more difficult to control than the actual vehicle.

When the simulator was put into operation, the results of the design computations

were checked by making test runs with each of the two drive system characteristics. The

experiments confirmed the computations in that the response with the low-gain system

showed a clear deterioration in damping of the attitude mode of motion, and the pilots

reported that the system was definitely more difficult to control than the high-gain system.
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Kinesthetic Control

Another method of control for which it was desired to obtain some insight is that of

kinesthetic control. With this method the operator controls vehicle attitude by shifting

his center of gravity. Usually, the vehicles considered as candidates for this type of con-

trol are very small, and the acceleration of the operator, as he moves about, reacts with

the vehicle in a manner that could be significant. Thus, the system has many additional

coupling terms that are not present in a conventional control system. Therefore, an

analysis was made by using pilot models to determine the effects of these additional

coupling terms.

Since the system does have these additional coupling terms, it is much more con-

venient to describe the system by using equations of motion rather than transfer functions.

In this type of description the pilot transfer function is split up, with the numerator being

included in the command equation and the denominator being included in the control equa-

tion. The equations are, then

Vehicle equations:

(iv÷ + ÷ +0v)

mph_J V + mphOp + (mp + mV)x = TO V

Control equation:

Command equation:

The variables are defined in figure 16, along with a block diagram of the system. The

outer-loop pilot model, which is not included in the system equations presented above, is

the same as mentioned in the section "Langley Lunar Landing Research Facility."

As the first step in determining the gains of the pilot model, the gains T 1 and _2

were adjusted to provide the proper control response characteristics; that is, a frequency

of 10 radians per second and a damping ratio of 1.0. These values were taken as being

representative values for control response when the vehicle is of the acceleration type

K/s2. The adjustment was made by using a single degree of freedom in control-deflection
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response to control-deflection command. In this particular case, the unstable nature of

the controller (the inverted pendulum configuration of the pilot) was taken into account.

This state gain T1 was made large enough to give the controller a stable characteristic

with a frequency of 10 radians per second. Then these controller gains were used in the

complete',' coupled system to determine the characteristics of the system response to a

commanded control deflection. It was found that the control response characteristics

were improved by the coupling terms. The frequency increased to 15 radians per second,

and the damping ratio increased to 1.4.

Next, the gains K 1 and K 2 were adjusted to provide the proper pitch-angle

response (a frequency of 1.0 radian per second and a damping ratio of 0.3, as has been

shown to be typical for an inner attitude loop in a multiloop control task). Again, these

gains were established by using a single-degree-of-freedom response to a pitch-angle

command. When these gains were combined with the complete, coupled system, the pitch-

angle response was degraded. The frequency dropped to 0.78 radian per second, and,

more significant, the damping ratio dropped to 0.16. When the outer loop was closed

around this pitch-angle system, the multiloop system became unstable. These results

indicate that the kinesthetic control system will be more difficult for a pilot than the con-

ventional type of system.

Kinesthetic control also suffers from a rather severe restriction on maximum con-

trol power. The pilot can shift his center of gravity only so far - any further and he

will topple over. Use of a computer to solve the nonlinear equations also showed that

this limitation in control power would also lead to system instability. Therefore, this

factor adds an additional restriction to the potential application of kinesthetic control.
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575



Vehicle-

attitude

angle, deg

-40

0

40

l0 Tir_e, sec 20

(a) Pilot-vehicle combination.

3O

Vehicle-

attitude

angle, deg

-40

0

40

10 Time, sec 20 3O

(b) Pilot-vehicle-simulator combination

with high-gain simulator.

Vehicle-

attitude

angle, deg

-40

0

40

::i I ! i ! ! ! _ : : i !A!::
,._..i _ _ ;I ,%1 i i /., I\! i-
q!.: i :1_ V.: I, _\

10 Time, sec 20

(c) Pilot-vehicle-simulator combination

with low-gain simulator.

3O

Figure 15.- Calculated vehicle attitude response to a

200-foot (61-meter) step translation command.
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10. INTRODUCTION TO LINEAR SYSTEM ANALYSIS AND DESIGN

BY USE OF STATE VECTOR APPROACH

By Raymond C. Montgomery

Langley Research Center

ABS TRAC T

This paper is concerned with the analysis and synthesis of linear feedback-control

systems by using the state vector approach. The analysis of linear systems is first con-

sidered. Here, both autonomous and time-varying solutions of linear systems are

studied. In particular the stability of linear time-invariant systems ie characterized, as

is the stability of periodic time-varying systems (Floquet theory). Next, control in linear

systems is studied. First, concepts of the controllability and observability are explained,

together with their relation to the determination of state-variable feedback gains and con-

struction of state-variable estimators. Then a practical method for calculation of feed-

back gains to obtain prespecified control-system characteristics is presented (differential

synthesis). The paper is concluded with an example of determination of state-variable

feedback gains for a lifting-body entry vehicle and the design of a state estimator for a

simple spring- mass system.

INTRODUC TION

The physical systems which are dealt with are often described in the form of a

differential equation

= f(x,u)

with time t as the independent variable where x is an n-dimensional state vector,

u is an m-dimensional control vector, mid f(x,u) is an n-dimensional vector function of

x and u. In this section a superscript t will imply the transpose of a vector or

matrix. As used herein, "state" means a set of quantities related to the system such that

if it is known at any instant, then the behavior of the system is determined as a functional

of the con£roi vector u(0 aluue. _l" ***,_,l_ _ ...................

linear in x and u or can be approximated by a set of linear differential equations. In

such cases the governing equations of motion of the system can be written in the form

=Ax+ Bu (x(O)=xO) 0)
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As an exampleof the state vector formulation of a problem consider the harmonic oscil-
lator shownin the following sketch:

k

/

J

J

f

/
i

The equation of motion for this system is

m

-------_ x h

=F

k F
Xh + _Xh=_

An appropriate state vector representation of this system can be made with x 1 = x h

and x 2 = Xh" The resulting equation of motion in state vector form of equation (1) is

F
where u = _ is taken as the control. Note that although the particular state selected is

acceptable, it is not the only acceptable one. Indeed any vector y = Tx where T is a

nonsingular matrix would be a suitable state. However y = x h is not a suitable state

since initial conditions for both x h and Xh are required along with the control input u

so as to define the motion. Other examples of systems which can be written in state

vector form according to equation (1) are the longitudinal and lateral linearized equations

of motion of aircraft with x t = (u,o_6,q) where u is incremental forward speed, _ is

incremental angle of attack, 0 is incremental pitch attitude, and q is pitch rate for the

longitudinal case and x t = _fl,p,r,_b) where _ is sideslip angle, p is roll rate, r is

yaw rate, and _ is the bank angle for the lateral case.

This paper is designed to be an introduction to the analysis and design of linear

control systems by using the state vector approach. As such even within the framework

of state vector methods some important exclusions must be made. One exclusion is the

analysis and synthesis of linear systems by using optimal control theory for which

reference 1 provides a suitable introduction; another is decoupling design which is the

subject of reference 2. These subjects are important and a thorough understanding of

them is essential to the control systems engineer; however, they are beyond the scope of

an introductory lecture. A major portion of this paper is devoted to linear systems

analysis. Some of the fundamental aspects of linear systems analysis in the state variable
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form are presented. A more detailed discussion of this subject is included in reference 3.

One useful design method presented consists of the synthesis of linear systems with vir-

tual state vector feedback by means of differential synthesis as developed by Montgomery

and Hatch (ref. 4) coupled with the state estimator design approach presented by

Luenherger (ref. 5).

SYMBOLS

A differential transition matrix

leading coefficient of numerator of transfer function $/5 a

real scalar

a(t) forcing function

B input matrix

B(s) matrix polynomial in s

Bk matrix coefficient of term

b input vector

s n-k in B(s)

C input matrix

C/p

C/r

C/5 a

CI5 r

Cnp

Cn r

damping-in- roll coefficient

rolling-moment coefficient due to yaw rate

rolling-moment coefficient due to sideslip

aileron rolling-moment coefficient

rudder rolling-moment coefficient

yawing-moment coefficient due to roll rate

damping-in-yaw coefficient
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Cn5 a

Cn5 r

Cyp

CY r

Cy5 a

CY5 r

Cik

cI

D

d(s)

dk

d(i)

dA(S)

eAt

F

Fij

f(g)

582

static directional- stability coefficient

aileron yawing-moment coefficient

rudder yawing-moment coefficient

lateral-force coefficient due to rolling velocity

lateral-force coefficient due to yawing velocity

lateral-force coefficient due to sideslip

lateral-force coefficient due to aileron deflection

lateral-force coefficient due to rudder deflection

forced variation in transfer-function parameters

coefficient of kthpower of A in A i

desired values of transfer-function parameters

matrix defined by equations (42)

characteristic polynomial of system

coefficient of s n-k in d(s)

ith column of D

augmented system characteristic polynomial

solution of equation (11) for constant A

control interconnect matrix

elements of F

function relating gain parameters g to transfer-function parameters

according to c = f(g)



f(t)

f(x,u)

G

gi(t)

H

Ix

Iz

Ixz

K

k

L(X)

M

m

m i

n

5

P

P(c,q)

forcing function for method of variation of parameters

vector function of x and u

gain matrix or Gram matrix

time functions defined according to equation (41)

system output matrix

commensurable identity matrix

rolling moment of inertia

yawing moment of inertia

product of inertia

augmented input matrix

integer or spring constant of harmonic oscillator

Laplace transform of X as shown in equation (5)

matrix defined by equations (43)

mass of harmonic oscillator or dimension of control vector u

multiplicity of ;ti

dimension of x

null matrix

differential transition matrix for state estimator

function relating flying-quality parameters q to transfer-function

parameters c according to P(c,q)=0
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P(t,to)

P

function defined by equation (36)

roll rate

Q u-input matrix for state observer

q flying-quality parameters

R y-input matrix for state observer

r

S(a)

yaw rate or radial distance

hypersphere of radius a

Laplace variable

T

t,t0,tl,t2,t 3

tr

transformation matrix or period of periodically time-varying system

time

trace

trA

U

sum of principle diagonal elements of matrix

input vector

A

Up

V

v(s)

augmented input vector

augmented input vector

Laplace transform of v

W

x(t)

weighting matrix

fundamental matrix of system

statevector

estimated state vector
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Xh

Yij

Ol

 i(t)

aijk

A

6 a

5r

Cd

0

T

T r

T S

position of harmonic oscillator

B(S)

matrices resulting from partialfraction expansion of d(s---_

system output

angle of attack

scalar functions defined by equations (40)

coefficient of s n-k in transfer function xi/u j

sideslip angle

scalar step size

aileron deflection

rudder deflection

damping coefficient of numerator quadratic of transfer function _/5 a

damping coefficient of Dutch roll mode

pitch angle

eigenvalues of system

unit vector with zero in all but ith position

dummy variable of integration used in method of conversion to

differential form

dummy variable of integration

roll-mode time constant

spiral-mode time constant
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r z time constant of state estimator

real zeros of characteristic polynomial for lateral aircraft dynamics other

than -1/r s and -1/T r

to) state transition matrix

Laplace transform of 4,

_(t) forcing function

elements of

state transition matrix for adjoint system

natural frequency of harmonic oscillator

cod natural frequency of Dutch roll mode

natural frequency of numerator quadratic of transfer function _/5 a

LINEAR SYSTEMS ANALYSIS

Solutions of Autonomous Equations

Now consider representing solutions of equation (1) for the case where the

matrices A and B are constant in time. Consider first the zero input or homo-

geneous solutions of equation (1). Owing to the similarity of equation (1) and the scalar

equation :_ = ax the solution of which is known to be of the form x = x0 eat where the

function e at is defined by

eat= 1 + at + (at)---_2+...+ (at)----_k+...
2'. k!

a solution of equation (1) of the form

is sought where
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Sincethe later two series expressions are remarkably similar, the matrix function X(t)

is most often written in literature as eAt. Solutions of equation (1) are therefore sought

of the form

x(t) = eAtx 0 /

(At) keAt I+At+(At)---_ 2+. ..+_+...
2'. k:

(2)

First note that the series expression for eAt converges absolutely and uniformly

for all finite intervals in t and its differentiated series

d(eAt_=A+A(At) +A (At)2+. . .+A (At)k+. . .
_\ " 2'. k'.

also converges absolutely and uniformly (ref. 5). It follows that x(t)

equations (2) satisfies

d ^At_ 0
_(t) = _-_(e /x = (AeAt)x 0 = A(eAtx 0) = Ax

and also satisfies the condition

as defined by

x(0) = eA0x 0 = Ix 0 = x0

Hence, owing to the uniqueness of the solutions of equation (!) passing through the initial

point x(0) = x 0, equations (2) provide the solution of equation (1) for u(t) = 0.

For the forced response of x(t) to u(t) defined by equation (1), again note that

the solution of the scalar equation /_ = ax + _(t) is expressible in the form of

_0ea(t-r)Duhamel's integral x(t) = x0eat + _(T) dT and therefore assumes a solution

of equation (1) of the form

x(t) = eAtx 0 + ;0 eA(t-T)Bu(7) d_- (3)

The fact that this assumed form of the solution of equation (1) is the solution may be

verified by direct substitution. In the process of substitution equation (3) must be differ-

entiated with respect to t. This differentiation proceeds as
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_(t) = AeAtx 0 + eA(t-_-)Bu(T) + AeA(t-T)Bu(_ ") d_
T=t

SO that

Since the basic properties of the function eAt are quite useful in the practical

application of linear system theory, some of these properties are set down here although

their proof is deferred until the discussion on time-varying linear systems. These

properties are

lear I = e(trA) t

eAtleAt2 = eA(tl+t2)

(eAtl) -1 =e-Atl

where leAt I indicates the determinant of the matrix e At and trA

of the matrix A, that is, the sum of its diagonal elements.

One important use of the properties of e At is the rapid calculation of the free-

motion response of x(t) defined by the solution to equation (1) where u(t) = 0. One

popular numerical integration scheme is the fourth-order Runge-Kutta numerical inte-

gration process. Another useful technique is to express the function eAt in terms of

elementary functions (a process to be presented subsequently). Another technique is to

use the series definition of eAt and the relation x(t) = eA(t-t0)x 0 to provide a rapid

and accurate method of calculating the free motion. Suppose that the free motion of

equation (1) with x(0) = x 0 at the discrete time intervals tk = ka (k = 1,2, . . .) is

desired. The series definition of eAt can be used to obtain

(4)

indicates the trace

eAA I + A.a + (AA)2
2_

or a fourth-order Runge-Kutta numerical integration process may be employed on the

system

± = AX (X(0) =I)
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to obtain the value of eAA = X(A). This process need be done only once for

x(0) = x 0

x(A) = x 1 = eAhx 0

x(2A) = X2 = eAAx 1

x(kA) = x k = eAAx k-1

Note that these formulas are an exact quadrature and their accuracy depends only on the

desired accuracy in obtaining the numerical value of eAA. For the general forced

response, equation (1) must be satisfied with an approximate quadrature. One approxi-

mate quadrature which is useful is

x_k + 1)A]= eAAx(kA) + (e-AA)n-IBu(kA)A

As previously mentioned one method for calculation of the free-motion response of

a linear system is to expand eAt in terms of elementary functions. To do this, the

Laplace transform is employed. The Laplace transform L(X) of a function X(t)

defined on the interval [0,_) is defined by

L(X) = .t e-Stx(t) dt (5)
0

For differentiable functions X

L(X) = S:

If @(t) - eAt, then

e-St_:(t) dt = -X(0) + sL(X)

= A (t)

• (0) = i

By applying the Laplace transform to this last differential equation the function

must satisfy

sL((I)) - I = AL((I))
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so that

(sI- A)L(4_)= I

and hence the Laplace transform _(s) = L(_) of the function cI,(t) is given by

= (sl-A)-I

By Cramer's rule the function _(s) can be written in the form

where

B(s) =B1 sn-1 +B2sn-2+... +B n

fd(s) =s n+dlsn-l+d2sn-2+ . . +d n

In equations (7) the quantities Bk are n-square matrices and the quantities dk are

scalars. The procedure for calculating the matrix coefficients Bk and the polynomial

coefficients dk, which appear in equations (7) by Cramer's rule, is not computationally

efficient. This difficulty is somewhat diminished by a procedure using the Leverrier

algorithm

B 1 = I d 1 = -trA "_

B 2 = IA + dlI d 2 = -ltr(B2A)

Bk = Bk_IA + dk_ll dk = _I tr (BkA)

B n = Bn_IA + dn_lI

6 = BnA + dnI

dn = _I tr(BnA)

To prove this algorithm, first note that by the definition of a matrix inverse

B(s)(sI - A) = d(s)I= (sl - A)B(s)
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so that

n n

snI+ _ sn-kdkI=S _
k=l k=l

n

sn-kB k - A Z sn-kBk
k=l

or

n n-I

snI+ _ sn-kdkI=BlSn+ _
k=l k=l

n

sn-kBk+l - A _ sn-kBk
k=l

Rearrangement of the last expression yields

n-1

0= sn(I - B1)+ _ sn-k(-Bk+ 1
k=l

+ BkA + dkI ) + /dnI + ABn)s 0

from which the matrix relations on the left-hand side of equations (8) are immediately

obtained.

To validate the right-hand side of the algorithm, equations (8), first note that

_-_ [d(s)_= - A

d Is I_ AI is the sum ofNow, by following the law for differentiation of determinants, _-_
the n-determinants obtained by successively replacing different columns of the matrix

(sI - A) by the derivative of the colunm to be replaced with respect to s. A typical

term for the kth column is

s - all -a12 . . . -al,k_ 1 0 -al,k+ 1 . . -aln

-a21 s - a22 . . -a2,k_ 1 0 -a2,k+ 1 . . -a2n

-akl -au_ . . -ak,k_ 1 1 -ak;k+ 1

-anl -an2 ... -an, k_ 1 0 -av.,k+l

-akn

s -iann!
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Now, since B(s)
ment (k,k) of

is the adjoint matrix of (sI - A) the kth term is precisely the ele-
B(s). It is therefore concludedthat

d [d(s)_= trB(s)

From equation (9)

ns n-1 + (n - 1)dl sn-2 + . .

identically in s so that

(n - k)d k = trBk+ 1

By using the left-hand side of equations (8)

Bk+ 1 = BkA + dkI

so that

. +dn_ 1 =sn-ltrB 1 + sn-2trB2 +...trB n

(k = 1,2,...,n-l)

(n - k)d k = trBkA + dktrI

dk = _ ltrBk A

The last expression directly yields

(k = 1,2,...,n-l)

(k = 1,2,...,n-l)

Extension of this last result to include k = n follows from the trace of the last equation

on the left-hand side of equations (8) which yields 0 = trBnA + ndn. This concludes the

proof of the Leverrier algorithm.

In order to expand eAt in terms of elementary functions it is advantageous to

reduce the algebraic equation for (sI - A) -1 to the form

mi-1

(si_A)_l B(s) _1 _ Yij=d(s) = (si= j=O - _i) j+l

where the values of _i for i = 1,2,...,_ are the distinct eigenvalues of A. This

expansion can be made by the method of partial fractions and is explained in reference 3.

(9)
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Oncethe expansionis madethe function eAt is
a mi-1

eAt= L-l_sI - A)-I_ = _ exit

i=l j=0

Solutions of Time-Varying Equations

The analysis of time-varying linear systems has risen to importance not only

because of its application to optimization techniques (in particular to direct iterative

methods) but also because it can account for the large variations in aerodynamic deriva-

tives and control effectivenesses which occur during the execution of large-scale maneu-

vers of aircraft. An example of this is the transition period during take-off and landing

of VTOL vehicles. Only elementary properties of time-varying linear systems are of

concern here. Consider then solutions of the system

_(t) = A(t) x(t) + a(t)[

x(t0) = x°

where A(t) and a(t) are defined over the time interval over which the solution

is required. This interval is presumed to include t o .

Owing to the linearity of equations (10) in x(t), if a state transition matrix

is defined by the expressions

a¢ (ttm = A(t) ¢(t,t0) _"_'-k , -UI

!
4,(t0,t0) = I )

x(t)

_(t,to)

(10)

ill)

then the general solution of

with X(tl) given is

dX (t) = A(t) X(t)
dt

x(t) = q_(t, tl) X(tl)

(12)

(13)

If X(t) is nonsingular at any time, then X(t) is said to be a fundamental matrix of

AI+_ _, .... +_,,., i1_ ,._o,, _,o ,,,,_-in,_d hv direct substitution noting the fact that ¢(t,tl)c'xkL, ] . ._Id__'._A'._A_ k_al _j _ ........... .t

satisfies equations (11). Aside from the fact that the state transition matrix satisfies

equations (11) and provides the solution to equation (12) by equation (13), this special

matrix has other useful properties. Some other properties of ¢(t, t0) are

¢(tl,t2) 4'(t2,t3) = ¢(tl,t3) (14)
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4,-1(tl,t2) = _(t2,tl) (15)

-_ ]4_(t,t0)l = trACt)]_(t,t0) ] (16)

f_ trA('r) d'r
0

],I,(t,t0_ = e (17)
] - ,

Equation (14) follows by defining X(t) = #(t,t3) and by using equation (12) in the following

way

X(tl) = ,I,(tl,t2)X(t2) = #(tl,t2) #(t2,t3)

so that

X(tl) = #(tl,t3) = _,(tl,t2),I,(t2,t3)

Equation (15) follows from applying equation (14) in the following way

I = ¢(tl,tl)= _,(tl,t2)_(t2,tl)

and, by using the definition of the matrix inverse equation (16), follows from the applica-

tion of the formula for differentiation of a determinant as follows

_bll 0412 _41n

at at " " " at

421 422

4nl _nn

411 412 "'" 41n

_421 0422

_t Ot
+

4nl 4nn

+ . . . +

41n

84nl O4nn

at

Then by using the relations -_-(t,t0) = ACt) ¢Ct,t0), the first term of the last series can be

written as

all_bll +a12_b21 +... +alnSnl, a11412 +a12_b22 +... +aln4n2, • .., allgPln+a1242n+... +aln4nn

qb21 (b22 42n

4nl _b2n 4nn
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By multiplication of the ith row by ali (i _ 1) andby addingthe negative of the result
to the first row for all i = 2,3,...,n, the preceding determinant is reduced to

allqSll allqbl2 • . allq_ln

_21 _22

which is

qbnl qbnn

all Iq_(t,t0)[. By applying this procedure to each term of the series,

"_1 _(t,t0)l = all(t) I_(t,t0)] +'" • + ann(t)Iq'(t't0)l

is obtained. Hence

o-_l_(t,t0)[ = trA _(t,t0) I

Equation (17) follows directly from the integration of equation (16) with the initial con-

dition Iq_(t0,t0) l = 1.

Now consider the forced response of equations (10). A solution of the form

x(t) = _(t,to) f(t) (18)

f(t) is a function to be determined. Substitution of equation (18) intois assumed where

equations (10) yields

which reduces to

_(t,t0) f(t) + ¢(t,t0) [(k) = A(t) 6(t,t0) f(t) + a(t)

by using equations (11) and (14).

,b(t,t0) f(t) = a(t)

Hence

f(t) = _(t0,t ) a(t) (19)
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Integration of equation (19) yields

f(to) + _;f(t)

0

From the initial condition x(t0) = x 0, it is seen that

equation (10) is generally of the form

or

¢(t0,r ) a(r) dr

f(t0) = x 0, and hence the solution of

x(t) = ¢(t,t0) 0 + ¢(t0,r ) a(r) d
0

(20)

t
x(t) = O(t,t0)x0 + /. O(t,r)a(r) dr (21)

"_t 0

The representation of the solutions of equations (10) obtained by using either of the

forms of equations (20) or (21) is inconvenient when applied to iterative optimization

schemes. This inconvenience is offset by using properties of the system adjoint to

equations (10). By defining the adjoint of the state transition matrix ¢I,(t,t0) of A(t)

for all (t,t0) according to the expression

where ,I,(t,t0)

so that

Hence

Since q,(t,t0)

,I,t(t,to) = 4,-l(t,to)

is the adjoint matrix, it is seen that

,_t(t,to) o(t,to) = I

t oO(t,to) ,I,(t,to) + ,I, (t,to)-_-(t,to) - 0

I-_tt (t,to)

is never singular

+ ,I,t(t,to) A(tt#(t,t0)

-_(, u, = -At(t) 'I'(t,to)

J• (t0,t0) = I

-0
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Note that if x(t) is a homogeneoussolution of equations(10)and y(t) satisfies

_(t) = -At(t) y(t) (24)

then

(xt) 0Y = "-_'Y + dt =

so that

xt(t) y(t) = xt(t0) y(t0) (25)

Also note that the solutions of equations (20) and (21) for x(t) can be written, by using

the adjoint matrix, as

tr-*

x(t) = _(t,t0)x(t0) + /. 'I't(7,t)a(¢) de
"t 0

(26)

Equation (26) is of particular use in trajectory optimization problems using the method of

steepest descent.

Stability of Linear Systems

One of the most important considerations in systems analysis is system stability.

Generaiiy stability can be defined as the absence of undesirable behavior. For purposes

of analysis, however, this definition is too vague to be useful. There are many definitions

of stability which are useful in systems analysis (Lyapunov, Lagrange, orbital, and so

forth). Each of the definitions of stability infers certain properties of the system to

which it is applied and stability in one sense does not usually infer stability in other

senses. In this paper only stability in the sense of Lyapunov is considered.

In giving a definition of Lyapunov stability, use is made of the notion of the hyper-

sphere S(a) of n-dimensional space defined by

where x is an n-dimensional vector and [Ix[[ =/{Xl2 + . . . + Xn2 .

A system is said to be stable in the sense of Lyapunov if given R > 0 it can be

determined that an r > 0 exists such that all system responses initiating within S(r)
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at any time t o remain for all t > t o within S(R).

following sketches:

Stable

Geometrically this is shown in the

Unstable

If, in addition to being stable, all solutions initiating within S(r) satisfy

(t0,x0 e S(r)), then the system is said to be asymptotically stable.for all

that is not stable is said to be unstable.

]im x(t) - 5
t-.oo

Any system

Before proceeding with the characterization of stability a definition of the norm of a

matrix is presented. A more detailed discussion of matrix norms is contained in refer-

ence 6. Given the n×n matrix A, the norm of

[[A[[ = inf (k JI[Axll

A, IIAll , is defined by

<kllxll) (27)

where inf ( ) implies the infimum. Since IIAo_ll= _llAxll =<kll_xll = _kllxll for c_ > 0

implies that I1_11=<kllxlJ, it is seen that the infimum of equation (2q) may be performed

over the unit sphere IIxll = 1. Hence an equivalent definition of [IA H is

IIAII = sup IIAxll (28)
Ilxll=1

From equation (27) it is also deduced that if C = AB, then

Ilcll _ IIAII" IIBII (29)

IIAxll_ IIAII • lixll (30)

Equation (30) follows immediately from equation (27), whereas equation (29) follows from

equation (30) by
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Similarly the triangle inequality

IIA+BII---<IIAII+ IIBII (31)

holds.

Now it can be stated and proved that, for a linear system with state transition

matrix @(t,t0) , the zero state is stable in the sense of Lyapunov if and only if there

exists a constant M such that II @(t,to)H ---M for all it,t0). If in addition 114,(t,t0)ll

as t - _o for all values of to, then the system is asymptotically stable.

For

Proof:

If II@(t,to)ll _-<M for all (t,to) and given any R > O, then

-_ suffices to show thatr

l]xOl[ -<r ===_ Hx(t) H = II (t,to)xO]l_-<[la,(t,to)ll.]lxOl]<

Hence the system is stable in the sense of Lyapunov.

Conversely, suppose that the system is stable in the sense of

Lyapunov and that ]l@(t,t0)ll has no upper bound. Since II@(t,t0)l[

is not bounded from above, at least one of its elements, for example,

. .I_bij(t,t0)l, has no upper bound. By selecting an initial condition

x0 = eu(J), where e > 0 and u(J) is a unit vector with zero in all

but the jth position, it can be seen that no matter how small

= IIx011 that xi(t) is unbounded. The zero state is hence
If" II " " • •

unstable which is a contradiction. This completes the proof of the

statement.

time-invariant systems, @(t,to) can be expressed in the form

mi-I

eAt= _ _ tJeXityij

i=l j=O

-0

(32)

Since

a mi-I

i=l j--0

the stabilityof time-invariant systems is directlyrelated to the eigenvalues of A, Xi,

and the multiplicity m i of those eigenvalues. Indeed the system is stable ifand only if
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all eigenvalues of A

simple eigenvalues of

negative real parts.

have nonpositive real parts and those with zero real parts are

A. For asymptotic stability all eigenvalues of A must have

Now consider some aspects of stability for periodic time-varying systems of the
form

x = A(t)x (A(t) = A(t + T)) (33)

In literature this stability analysis is called Floquet theory. Let _(t,t0) be the state

transition matrix for A(t):

(1) Note that _(t+T,t0) is a fundamental matrix of A(t). This is seen by defining

X(t,t0) = _(t+T,t0). Hence,

_X t,t0) = _@(t+T,t0) = A(t+T) _(t+T,t0) = A(t)X(t,t0)( -_-

and since X(t0,t0) = 6(t0+T,t0) is nonsingular, it follows that X(t,t0) is a fundamental

matrix of A(t).

(2) @(t+T,t0) = _(t,t0) #(t0+T,t0). This follows since the solution X(t) of a linear

system can be expressed as X(t) = _(t,t0)X(t0). By using _(t+T,t0) as X(t), it follows
that

X(t) _ 6(t+T,t0) = _(t,t0)X(t0) = _(t,t0)_(t0+T,t0)

Now define a matrix B as

Then from statement (2)

Consider the function P(t,t0)

eBT = @(t0+T,t0)

#(t+T,t0) = @(t,t0)e BT

defined by

-S(t-t0)
P(t,t0) = 4_(t,t0) e

(34)

(35)

(36)
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Note that P(t,t0) is periodic in t since

-B(t-t0)-BT _ T]e-(t-t0)BP(t+T,t0) = _(t+T,t0) e = (t+T,t0) e -B = _,(t,t0)

(from eq. (35)). Hence the fundamental matrix _(t,t0)

_I,(t,t0) = P(t,t0) eB(t-t0)

where P(t,t0) is periodic in t with period T and where

e-(t-t0) B

can be written in the form

B is defined by equa-

tion (34). Since P(t,t0) is periodic, the stability of the system can be related to the

stability of the invariant system

y=By

The eigenvalues of B are called the "characteristic exponents" of A(t). Solutions of

equations (33) and (38) are related by x(t) = P(t,t0) y(t). Since P(t,t0) is nonsingular,

the initial condition of y is given by Y(t0) = P(t0,t0) x(t0) = x(t0).

CONTROL IN LINEAR SYSTEMS

(37)

(38)

Concepts of Controllability and Observability

Before stating the definitions of controllability and observability, some facts con-

cerning time-invariant systems not previously mentioned that have a strong influence on

both controllability and observability of time-invariant systems are demonstrated. One

of the most useful results of matrix theory is the Caley-Hamilton theorem. From the

Leverrier algorithm

B 1 =I, . . . Bk=Bk_lA+dk_l I, . . . 6 =BnA+dnI

the following sequence is constructed

= BnA + dnI = (Bn_IA + dn_lI)A + dnI

- )A2 I_A_0 = Bn_i A2 + Un_l_ + _,n• = _'n-_-- . 2 • n .... ,,

= Bn_k Ak+l + dn_k+l Ak + dn_k+2Ak-1 + . . . + dnI
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andfinally

=A n+dlAn -1 +... +dnA0

The last result is the famous Caley-Hamilton theorem; that is, a matrix A satisfies its

own characteristic equation. From this theorem it is obvious that any power of A can

be written as a linear combination of the powers of A between zero and n-l; that is,

n-1

Ai= _ Cik Ak

k=0

(i = 0,1,...) (39)

oo

t k
It also follows that, since eat = }i A k

k:'
n=0

or

n teAt= _ cij(t

i--o j=o

n-1

eAt= _ °el(t) Ai
i=0

A i

(40)

By using this expression, general solutions of equation (1) can be written as

x(t) = eAt 0 + e-ATBu(7) d
I

or

Ix n-_l _0
x(t) = eAt 0 + AiB gi(z) u(7) d

i=0

(41)

Controllability and observability are now defined. In the following, controllability

and observability are used to infer what is called complete controllability and complete

observability, respectively, in the technical literature. A more detailed discussion of all

aspects of controllability and observability is provided in reference 3. A time-invariant

linear system is herein said to be controllable if given an arbitrary x0 there is a

finite time T and a control u(t) (0 _-<t =<T) such that x(0) =x 0 and x(T) =0. To

define observability, first introduce the notion of system output. The following equations
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describe a linear system

y Cx +
(42)

where x, y, and u are vectors of dimensions n, p, and m, respectively. Here it

has been assumed that the state x is not directly obtainable and knowledge of the system

can only be obtained through a measurement of y and a knowledge of u. The concept of

observability relates to being able to determine the state of the system from measure-

ments of y and u over an interval in time. If a system is not observable, then it may

undergo internal motion with no input or output and this motion be hence undetectable. A

time-invariant system of equations (42) is said to be observable if given the output y(t)

and input u(t) over the interval 0 =<t _-<T the initial state x(0) of the system can be

determined uniquely.

In order to characterize controllability of a system, equation (41) and the definition

of controllability are used to obtain that in some finite T

Ixn- 5 = e AT 0 + _ AiB gi('r) u('r) d

i=0

or since e AT is nonsingular

n-1

i=O

gi('r) u('r) d'r = -x 0

By using the definitions

M=EAOB ,A1B, A2B,... An-IB]I

v= _W Igl(t) u(t)• dt
O 0 !

_gn- 1 (t) u(t)

(43)

it is seen that v must satisfy

L-6892

MV = -x 0 (44)

603



for all values of x0 so that M must possess n linearly independentcolumnvectors
for the system to be controllable. The condition that M has n linearly independent
columnvectors is both necessaryand sufficient for the system to be controllable. To
check the system of equations(42) for controllability, determine the rank of M, and the
system is controllable if and only if

rank M = rankEAOB , A1B,... An-IB_ = n (45)

For observability no generality is lost by considering the system of equations (42)

with no input. The resulting output satisfies

y(t) = ceAtx 0

or

y(t) =

n-1

' ak(t ) CAkx 0

k_

Hence by denoting D& C t and by letting d(i ) be the ith column of D

n-1

k=0
(ai,Otk)d(j_Akx0 = (oti,yj)

where the inner product

ai(t) (i= 0,1,...,0)

elements Gij are

_T

(fl'f2)- _0- fl(t) f2(t) dt is used• Since the functions

are linearly independent, the Gram matrix

(ai,aj) , is nonsingular.

d(j_AOx 0

d(]_ AlxO

d(j_A n lxO

=G-1

G, the matrix G whose

The last set of equations thus has a solution

(al,Yj)

Note that the quantities on the right-hand side are components of x 0 projected on the

vectors Atkd(j). Hence this set of vectors must span the vector space of x 0 so that

x 0 can be uniquely determined. It follows that observability of the system may be
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determined by evaluationof the rank of the matrix F,[_At0D,--M1D,... Atn-lDj-] which
must be n if the system is to be observable.

FeedbackControl

If the system characteristics are unacceptableit is sometimes possible to favorably
alter the basic system characteristics using feedbackcontrol. If the feedbacksystem is
linear

u = Gx + Fv (46)

as illustrated in the following sketch:

=Ax+Bu I
x

The system characteristics are altered so that they behave according to the modified

equation

= (A + BG)x + BFv

and the system transfer functions are altered according to

x(s) = (sI - A - BG)-IBFv(s)

For the special case where B is avector b and G is avector transposed

equation (48) is particularly useful since the characteristic of the system can be written

= (sI = A) - bg

where B(s) is used as the adjoint of (sI - A) and d(s) is used as the characteristic

polynomial of A. From known properties of determinants

(47)

(48)

gt,
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where

I B(s)_ t_det [sI- A- bg_jq= d(s) det -

=d(s)_-gtB(s)b-]d(s)

det i-M] denotes the determinant of a square matrix M

det _+abt]=l+bta

is used. Hence if dA(s ) is the augmented characteristic polynomial and d(s) is the

unaugmented one, they are related through the expression

dA(S) = d(s) - gtB(s) b

Equating coefficients of powers of s in equation (49) gives

dAk - d k = -gtBkb

btBtg : dk- dAk

or

and where the identity

which are n equations for the n gains of g. If the matrix

(49)

(k=l,2,...n)

btBltl

btB2 t
is nonsingular

equation (49) has a unique solution for arbitrary differences d k - dAk. This condition

equivalent to rank LA0b, Alb, . . . An-lb] = n. Hence, if the system is controllable,is

the characteristic roots of the closed-loop system may be arbitrarily specified through

state variable feedback•

State Variable Reconstruction

In many control problems, where it is desirable to utilize state variable feedback,

the state is not available and only some restricted output quantity can be measured• In

such cases it is possible to design an estimator of the state provided the output is observ-

able. Consider the linear system
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x=Ax+Culy Hx
(50)

The assumption is made that this system is observable through the output y. Augment

the expression y = Hx with an auxilary equation z = Tx such that [_J is a square

matrix. Here z will be the state of the observer or state estimator. Assume that the

state estimator satisfies a linear set of equations

_.= Pz +Qu +Ry (51)

(Note that u and y, which are available measurements, are used as inputs to this state

estimator.) Now see which conditions need be placed on P, Q, R, and T to con-

struct the observer.

The identity z = Tx must be satisfied for all x and u. Also _. - T_ implies

that

or

for all (x,u).

Generally A, P,

Q are determined.

PTx + Qu + RI'Lx= TAx + TCu

(TA - PT - RI-I)x+ (TC - Q)u - 0

Hence the observer must satisfythe expressions

TA = PT + RH

Q = TC

RH, and C in equations (52)and (53)are specifiedand both

Sequentiallypostmultiplying equation (52)by A gives

TA = PT + RH

TA 2 = p2T + RHA + PRH

TA 3 = p3T + RHA 2 + PRHA + p2RH

T

(52)

(53)

and

TA n = pnT + RHA n-I + PRHA n-2 + . . + pn-IRHA 0
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If the values of dk are the coefficients of the power n - k of s in the characteristic
equationof A, multiply the equationsby these coefficients and collect terms onaddingto
obtain

(An+dlAn-1 +... +dnA0)_ TdnA0T

= (pn + dlPn-1 +... + dnP0)T - p0dn T + _b(P,R,H,A)

or, since A satisfies its own characteristic equation,

(pn + dlPn-1 +. . + dnP0)T = -_b(P,R,H,A)

Hence, determining T rests on the singularity of the matrix polynomial

pn+ dlPn-l+. .+dn p0. If eigenvalues of A and P are required to be distinct,

then this assures the nonsingularity of the matrix of these coefficients. On the other

hand if eigenvalues of P are allowed to be those of A, the solution of T cannot be

assured.

Synthesis of Feedback Control

For a linear system of the form

/_ = Ax + Cu (54)

the character of the response of the system to control input is specified by a set of

transfer functions. The transfer functions are derived by taking the Laplace transform

of equation (54) with the initial conditions set to zero; therefore

x(s) = (sI - A)-lCu(s) (55)

Hence, the transfer function between the ith component of x and the jth component of u

is of the form

xi=__aijl sn-1 + aij2 sn-2+" • • + aijn (56)

uj s n+dlsn-1 +d2sn-2 +... +dn

where the coefficients dk can be obtained from equations (8) and the coefficients aijk
can be computed from the expression

aijk = /xitBkCuj C57)
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where _i and _j are commensurableunit vectors with zero in all but the ith and
jth positions, respectively. The pole-zero configuration of the transfer function (eq. (56))

is implicitly determined by the coefficients _ijk and dk.

In order to alter the transfer-function coefficients and thus the pole-zero configura-
tion a feedbackcontrol system is introduced as schematically illustrated in figure 1. The
system has the form

u = Gx+ Fup (58)

where

F m x m control interconnect matrix

G m × n linear feedbackgain matrix

Up m-dimensional input vector

Whenequation(58) is substituted into equation(1) the system becomes

where

= Hx + Kup (59)

(6O)

The system transfer function becomes

x(s) = (sI - H)-lKup(S) (61)

The transfer function between the component

has the same form as equation (56) where the coefficients _ijk and

obtained by substitution of H for A in equations (8)and K for C

The problem considered here is to determine a gain matrix G

matrix F that result in a specific set of coefficients _ijk and d k
n

the transfer lunction oi interest xi/u j.

One way to determine the matrices G and F is, after substituting equation (9)

into equations (4) and (6), to expand equations (8) and (57) in terms of the elements of G

and F and construct a set of nonlinear algebraic equations of the form

x i of x and the component Upj of Up

d k have been

in equation (57).

and an interconnect

correspon_ng to

L-6892
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Here the transfer-function coefficients c are

ct= (dl,''-,dn, _ijl,. ",_ijn) (63)

andthe vector of independentvariables g is

gt =(gll,. • ",gln," • ",gmn, fll,- • ",flm,- ",fmm) (64)

and f(g) is the set of nonlinear functions representing the relationship between the ele-

ments of g and c. Equation (62) must then be solved for a set of gain and interconnect

matrix elements that result in a specified c = c 1.

For a complex set of equations such as those representing aircraft dynamics, equa-

tion (62) is difficult to construct and not generally easy to solve. In order to avoid these

difficulties the method of solution proposed here is to convert the nonlinear algebraic set

of equations into a set of implicit differential equations with known initial conditions.

In order to best explain the method of conversion to differential form for solving

nonlinear algebraic equations, consider the scalar equation

f(g) =g2 _ 3g+2 =c (65)

The graph of f(g) against g satisfying equation (65) is presented in figure 2. Assume

that the object is to determine a value of g that satisfies f(g) = 0. First, let both g

and c be functions of a dummy variable a which varies between 0 and 1; that is,

c : c(a)
variatior

c(1):

trate

tion

rain,

and g = g(a). The basic idea is to choose an arbitrary gO = g(0) and select a

:(_) such that it passes through the point c(0) = f(g0) and the desired point

typical curve c(a) satisfying these requirements is the straight line illus-

:ure 3. Here c(0) was calculated by substituting g = gO = 0 into equa-

Fhen the variation in g(_) required by the identity f_(cr)_ =- c((r) is deter-

sing a differential form of equation (65)

af dg dc
=

Fc _articular example using the straight-line variation indicated in figure 3 for

c(_), tnt derivative dg/dcr must satisfy

(66)
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Equation (66)may be integrated numerically over the interval 0 _-<(r -< 1 by using the

chosen initial condition g(0) = 0. The value of g at a = 1 satisfied fig(l)] = c(1) = 0

and a solution to the equation f(g) = 0 is obtained.

It is obvious that for this simple example it is easier to solve the nonlinear alge-

braic equation by using the quadratic formula than to apply a conversion to differential

form. However for complex linear systems a conversion to differential form has advan-

tages which are discussed subsequently.

Conversion to differential form can be applied to the synthesis of linear systems by

solving equation (62) in a manner similar to that used for the scalar equation (65).

Assume that the object is to select a vector c 1 consisting of desired transfer-function

coefficients and determine a gain and interconnect vector gl that satisfies f(gl) = c 1.

Let c and g be functions of the dummy variable a and select c(cr) such that it

satisfies c(0) = c O where cO _ f(g0), c(1) = c 1, and is differentiable on the interval

0 _-<cr _--<1. The linear function

- cO+ cO) (67)

is an example. The variation in g(a) required by the identity fEg((r)] C((r) must

satisfy the equation

gradg f_(a)] _ (or) dc= _--_(cr) (68)

which is equation (62) converted to differential form. Here gradg fEg((_)] = af[g((r)-]
ag

Equation (68) is a set of implicit differential equations which are linear in the deriva-

tives dg/da and which can usually be integrated numerically over the interval 0 =<cr -<__1

by using the initial conditions g(0) = gO. The right-hand side of the equation (that is,

dc/dcr) can be thought of as a forcing function requiring g((r) to follow some path which

preserves the identity f_((_)] = c(cr). Therefore the value of g(cr) at a = 1 should

satisfy the equation lEg(l)] = c 1 and a gain and interconnect vector gl is obtained that

results in a vector c 1 of desired transfer-function coefficients. During integration of

equation (68) singularities may arise because of the implicit nature of these differential

equations. A discussion of these singular situations is now presented.

An advantage of this synthesis technique is that the vector c and the matrix

gradg f_(cr)_ can be easily formulated by using Leverrier's algorithm and a differenti-

ated form of this algorithm. Thus the complicated nonlinear algebraic functions f(g)
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neednotbe expandedinto scalar form and equation(68)canbe constructed as well as

solved by using a digital computer. The method of calculating gradg f_(a)_ is now

presented.

In order to obtain a suitable forcing function dc((r)/dcr, the function c(cr) must be

determined. As previously stated c(cr)

vectors of transfer-function coefficients.

by assuming some initial gain vector g

matrix G and the interconnect matrix

must pass through the initial and desired

The vector of initial coefficients is calculated

which is made up of the elements of the gain

F. Usually, suitable initial conditions are

G = 0 and F = I which are equivalent to the open-loop system without control augmen-

tation. However, in some cases when the off diagonal elements of F are to be changed,

their initial values should be nonzero to avoid computational difficulties. The selection

of desirable coefficients can be accomplished for the aircraft from established flying-

qualities parameters. These parameters are determined by the desired transfer-

function pole-zero locations. For other applications similar criteria would have to be

obtained to establish a desired value c 1.

The first function c(g) to be used was the linear variation of equation (67). It

was found that with the resulting forcing function

dc(a) = cl _ cO (69)
d(x

integration errors which occur during integration of equation (68) were not reduced but

remained uncorrected. However the effect of integration errors is reduced by modifying

equation (69) so that the slope dc(cr)/dcr is continuously updated. The modified linear

forcing function which accomplishes this updating is

dc_ c 1 - f(g) (70)
dg 1 - cr

This function has been used successfully in many applications. This closed-loop forcing

function greatly improves the computational accuracy of obtaining the desired c 1 and

thus gl. Equations (69) and (70) are the only two forcing functions which have been

used; however, others may be satisfactory.

In some applications it is desirable to determine the gain vector g required to

specify functions of the transfer-function polynomial coefficients instead of the coeffi-

cients directly. These functions can be the parameters obtained when the polynomials

are factored. To do this requires a modification of the forcing function as well as the

gradient matrix. Consider then the problem of specifying a set of parameters q that

are algebraically related to the elements d k and aij k of the vector c by the equation
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P(c,q) = 0 (71)

By using the same concept developed to specify c, equation (71) is formally differentiated

to yield

dp pdc=0
gradq P_-_ + grad c d_

Hence from equation (68) a relation between the variations in q and the gain and inter-

connect matrix variations is established

grad c P gradg f dd--_g=-gradq P dq (72)d_

In equation (72) the quantity dq/da on the right-hand side acts as the forcing term and

is selected arbitrarily. Equation (72) is then numerically integrated to obtain the

vector g(_) required to obtain the variation selected q(a). The application of equa-

tion (72) follows along the same line as that of equation (68).

To construct the matrix gradg f(g) first consider the partial derivatives of f(g)

with respect to the gain matrix elements. Let dG represent an infinitesimal change in

the gain matrix G. This change causes infinitesimal changes in the matrices Bk and

the coefficients d k of equations (8) when H is substituted for A. These matrices

and coefficients obey the equations

dB 1 = 0

dB k = (dBk_l)H + Bk_ICdG + Id(dk_l)

(d(dl) = -trace (CdG))

(k = 2, 3,...,n) J

(73)

where dB k and d(dk) are infinitesimal changes in the matrices Bk and coeffi-

cients d k. Equations (73) are linear in the matrix dG so that by setting all the ele-

ments dG to zero, except dGpq which is set to unity (dG = _pgqt), the result is that

d(dk) = Odk/agpq and dB k = OBk/Ogpq. The partial derivatives Sdk/agpq are ele-

ments of one column of gradg f(g). To obtain the elements O_ijk/Ogpq of the same

column the partial derivatives OBk/Ogpq are used in a differential form of equation (57)

OB__.__k_aijk = Izit (74)
_gpq _gpq K_z]

Thus by repeated substitutionthe gradient matrix elements related to G can be

obtained.
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Now consider elements of gradg f(g) which are partial derivatives of f(g)

respect to the interconnect matrix elements fpq. Note that the coefficients dk

the matrices Bk are independent of the matrix K so that 0dk/afpq = 0 and

0Bk/0fpq = 0. Hence from equations (57) and (60)

_aijk_ = ;_i t °Bk0fpqKlx].t + ;zitBk C _ ;_j = ;zitBkC;_plZqtlZ j

with

and

by using

OF =
Ofpq gp _qt

Thus

= (75)
(j dq

Again by repeated substitution the gradient matrix columns related to F can be obtained.

This entire process can be accomplished by using a digital computer.

During the integration of equation (68) there may be instances in which the determinant

of gradg fEg(a)J goes to zero. At these singular situations there is a restricted set of

variations in c(a) that can be realized by variations in g(a); that is, the variations in

c(a) are not completely arbitrary and in some instances the desired c I may not be

obtainable. A thorough investigation of these singular situations has not been undertaken;

however, it is known that they arise when g(_) passes through a local maxima or minima

of the elements of f(g) or when the poles or zeros of the transfer functions being altered

change from pairs of complex roots to pairs of real roots and vice versa. Two techniques

have been used to avoid or bypass these singularities. These techniques are applicable

only when the number of transfer-function coefficients being varied is less than the total

number of gain and interconnect matrix elements available. In order to explain these

techniques first assume that only feedback gains can be altered. Further assume that

there are eight gains available and only six transfer-function coefficients are to be

altered. Conceptually only six gains should be required to alter six coefficients but in

order to avoid singularities seven gains are allowed to vary.

The first technique used to avoid singularities is based on minor determinants of

gradg f(g). During each integration step any six of the seven chosen gains are allowed to

vary with the seventh remaining constant at its last value. The combination of six gains

can change from step to step and is chosen at the beginning of each step by determining
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which of the seven possible six-by-six gradient matrices has the largest determinant.

By using this procedure, gain combinations which result in gradients with determinants

near zero are avoided and thus singularities are avoided. This technique is easily pro-

gramed in the computer and is used for all the examples presented in the application

section.

The second technique used to avoid singularities utilizes optimum methods to

calculate dg(a)/da. The performance index

Vdgt (a)] W [dg(a)]
L- -J da J

is minimized subject to the constraint of equation (68). By applying basic optimization

techniques

w-l ra% f(g>]t(g a% f(g)w-lEgra % f(g)_t) -1 _(a)

Here all seven of the chosen gains vary during each integration step but the weighting

matrix W can be used to place more or less emphasis on a particular gain. This

technique has been used successfully in all applications attempted.

It should be noted that the solutions for g obtained by this synthesis technique

are not unique as illustrated by the example of figure 2. The result of integrating equa-

tion (66) with the initial condition g(0) = 0 leads to the solution g(1) = 1. However the

initial condition g(0) = 3 is also appropriate for equation (66), but it leads to the result

g(1) = 2. The two techniques used to bypass singularities also have nonunique results.

In these cases, however, the solution obtained represents only one of a complete family

of possible solutions.

An Illustrative Example of Gain Determination

The differential synthesis technique developed in the preceding section was applied

to determining feedback gains and control interconnect ratios to obtain various pole-

zero configurations for the transfer functions related to the lateral response of a lifting-

body entry vehicle. A flight condition at a Mach number of 1.8, an altitude of 6{)000 feet

(18.288 kilometers), and an angle of attack of 15 ° was used in this study. Table I con-

tains the vehicle configuration and aerodynamic data used. The linearized aircraft

lateral equations of motion used can be ,uuuu"-' h L z_eference 7 "-_ ...... _..... 1..,+._

according to equation (1) with

x t _ (Xl,X2,X3,X4)= (p,_b,r,13)
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and

ut =

One of the important indicators of the quality of lateral response is the bank angle

to aileron transfer function. Flight and simulator experience has shown that seven

flying-quality parameters in this transfer function influence pilot opinion of lateral

response. These are A_b, _b, °)_b, Ts, 7r, _d, and w d which appear in the bank

angle to aileron transfer function

When written in the form of equation (56), equation (76) is

_b _ x2 _212 s2 + _213 s + cz214

6a Ul s 4 +dls3+d2s2 +d3s +d 4

(77)

If the flying-quality parameters are unsatisfactory, the coefficients dk and czij k can

be adjusted so that desired flying-quality parameters are obtained. Desirable flying-

quality parameters for the transfer function _b/6 a were selected from information con-

tained in references 8 and 9 which indicate that pole-zero cancellation is desirable in

order to obtain good response. Numerical values of the desired flying-quality param-

eters used in the study as well as those of the basic vehicle are listed in table II. The

lateral response of the basic vehicle is unacceptable at this flight condition because of

roll reversal indicated by the negative value of w$ 2. Also the value of 1/_"r indicates

that the roll subsidence damping is too low, and the value of _d indicates that the Dutch

roll mode damping is too low. This basic case has been selected since it demonstrates

some design problems that may be encountered.

The objective of this example was to determine a gain matrix G required to obtain

particular values of all the numerator and denominator coefficients except a212 of

equation (77) by using a control interconnect matrix of F = I. Thus six coefficients were

changed and the vector c was of the form

ct= (dl,d2,d3,d4,_213,c_214)

Since only six coefficients were to be changed, in concept only six gain matrix elements

should have been required. However to avoid singularities in the gradient matrix of
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equation (68), sevenfeedbackgains were employed. Hencefor this exampleall gain
matrix elementswere used except 5r/_ and equation(68)was implementedwith

gt = (gll,g12,g13,g14,g21,g23,g24)

For this example the initial conditions at a = 0 corresponded to the unaugmented

aircraft with G = 0 and F = I. The closed-loop form of the forcing function on the

right-hand side of equation (68)

was used with c 1 taken as the list of desired coefficients contained in table II. Equa-

tion (68) was then numerically integrated from a = 0 to a = 1 in steps of 0.1 by using

a fourth-order Runge-Kutta integration process. The variation of the coefficients (com-

ponents of c) with a is illustrated in figure 4 which shows that the selected linear

variation in c(a) with _ was followed very closely by f(g) and that the components

of c at a = 1 were equal to the components of c 1. Figure 4 also illustrates the vari-

ation of the associated flying-quality parameters with a that results from the linear

variation of the coefficients. Note that at a = 0, the numerator polynomial has two real

zeros __l/V@l and --1//T_2" As a increases, the real zeros meet and then break away
into a pair of complex zeros at a = 0.22.

The gain variations that were calculated to establish the coefficient variations of

figure 4 are shown in figure 5. From a = 0 to a = 0.2, six gains were varied and the

gain 5a./r was held constant at zero. In the neighborhood of a = 0.22, a singularity

occurred in the gradient matrix because of the change in analytic form of the numerator

polynomial and the integration process could not continue holding 5a/r = 0. However

this singularity was avoided and the integration step was completed by holding the

gain 5r/p constant and allowing the remaining six gains to vary. The numerical inte-

gration process may be slightly inaccurate in the neighborhood of this singularity; how-

ever, because of the closed-loop programing of the coefficient variations this inaccuracy

has little effect on the outcome of the integration process at _ = 1. From a = 0.3 to

= 0.7, the gain 5a/r was again held constant. Another type of singularity occurred in

the neighborhood of _ = 0.7. This singularity was due to the rapidly increasing

gain 5r/p. By holding 5r/p constant and allowing the remaining six gains to vary,

the integration process was continued to a = i. At _ = 1, _im _-ad_is .......... _ *_^tlld, I, _£_::J._t t, ll_

desired numerator and denominator coefficients of equation (77) were obtained. Although

in this case seven gains were used to change six coefficients, in some cases the additional

gain may not be necessary. A Control Data Corporation 6600 series digital computer was

used to obtain the results for this case and the run time was 8 seconds.
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Thetime histories of the responses of the aircraft to 5 ° step aileron inputs pre-

sented in figures 6 and 7 clearly illustrate the effect of using a feedback control system.

Figure 6 illustrates the response of the basic vehicle, and figure 7 illustrates that of the

augmented vehicle. The surging and reversal of the bank-angle response have been

corrected; however, there still remains an undesirable steady-state sideslip. By using

other combinations of feedback gains it is practically possible to eliminate this undesir-

able effect.

An Illustrative Example of State Reconstruction

An illustration of the application of L_enburger's state estimator to feedback con-

trol systems design is now presented. Here it is assumed that the state variable feed-

back gains which yield desired characteristics of the closed-loop system have been

obtained by differential synthesis or some other method. A system is designed by using

Luenburger's approach to estimate the actual system state, thus allowing use of this

estimated state in the feedback loop. The inputs to this state estimator are restricted to

allowable system measurements - the actual system output and the state of the estimator.

Consider the problem of designing a feedback control system for the harmonic

oscillator discussed in the introduction. The equations of motion of the oscillator are

_=Ax+Cu

where

I° :]A = -w 2

and

with w2 k and u= F
=_ _- The predetermined feedback system is

u = G_ + Fup

where _ is the estimated state and Up is the closed-loop system input. The matrices

G = (gl,g2) and F = f are assumed previously determined. As an output of the actual

system assume that only the position of the oscillator can be measured; that is, y = Hx

where H = (1,0).
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The state estimator will be a system similar to that of equation (51) according to

and the estimators state

/ \

The matrices T = (tl,t2)

matrix equations yield the following scalar relations that

= Pz + Qu +Ry

z is related to the estimated state

zfTx

and Q = q must satisfy equations (52) and (53). These

T and Q must satisfy

1
-w2t 2 + V-_ztl = r

according to

1
_zt2 + t 1 = 0

q =t 2

The solution to the last set of equations is

T = t(-_ 1),

Q=q=t

where t = -r

,.,2 + 1"
_-z2

Hence the estimated state of the actual system is given by

and the feedback control system is

u = G_+ FUp = 1 + y+ z+fu r

When this control system is employed in the actual system, the new system has

three states - the position and velocity of the o_ciiiator ai_d the ...... . .k^ ^_.=__,^_

The transfer functions between these three state variables and the control input Up are
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Up E

m=S +

1 _/s 2 w2 Note that the factor s + _ appears in each of
where A = +'_z)\ - g2s + - g "
these transfer functions as well as in the total-system characteristic polynomial.
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TABLE I.- VEHICLE CONFIGURATION AND AERODYNAMIC DATA a

Mass, kg ................................. 4536

Ix, kg-m 2 ................................ 2318

Iz, kg-m 2 ................................ 10 301

Ixz , kg-m 2 ................................ 678

Wing span, m .................... , . • • ...... 4.648

Wing area, m 2 .............................. 16.722

C/p .................................... -0.15

Clr .................................... 0

CI_ .................................... -0.05

CI 6a ................................... -0.015

C/5 r . , ................................. 0.005

Cnp .................................... 0

Cnr .................................... -0.2

Cn_ .................................... 0.05

Cn6 a ................................... 0.02

Cn5 r ................. , ................. -0.02

Cyp .................................... 0

Cy r .................................... 0

.................................... -o.8

Cysa ................ . ................... 0

CYSr ................................... 0.04

aBody-axis aerodynamic coefficients are in radian measure.
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TABLE H.- COEFFICIENTS AND FLYING-QUAUTY PARAMETERS

FOR TRANSFER FUNCTION #/6 a

Coefficients

dl " " " " " " " " " " " " "

d2 • • • • • • • • • • • • •

d3 ............. ,

d4 • • • • • • • • • • • * . i

_212 ...........

u213 ...........

u214 ...........

Basic

0.5'/

11.17

3.43

0.043

-7.14

-1.32

17.89

Desired Flying-quality parameters

2.41

10.37

13.60

0.14

(al

-6.43

- 64.30

1//T s ............

1/T r ............

_d .............

cod .............

A_ .............

_ .............

(J-)_). • • ° . • • • . • • • •

a_q52/Wd2 .........

Basic

0.013

0.296

0.039

3.33

-7.14

(b)

(b)

-0.226

Desired

0.01

1.5

0.15

3.0

(a)

0.15

3.0

1.0

aNot specified.

bFor basic case, numerator quadratic in transfer function

zeros: I/r@l= 1.68 and I/T#2=-1.5.

@/6a has two real
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Up

Figure i.- System block diagram.

f(g)

_q I I I
I0 I 2 5

g

Figure 2.- Graph of scalar function

defined by equation (65).

2

C

I

0 .25 .50 .75 1.0

0"

Figure 3.- Graph of selecbed variation c(_)

and variation g(a) which result from

solutffon of equation (66).
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Figure 6.- Time history of response of basic vehicle to 5 ° step aileron iliput.
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11. OPTIMIZATION TECHNIQUES

By Ernest S. Armstrong

Langley Research Center

ABSTRAC T

A brief introduction to some of the important concepts of deterministic optimal

control theory is presented. The optimization of functions is treated by the methods

of mathematical programing, and the optimization of definite integrals is treated by

optimal control theory. Sequential and nonsequential methods are considered.

INTRODUC TION

A brief introduction to some of the important concepts of deterministic optimiza-

tion theory is presented. Optimization herein means either the maximization or mini-

mization of a scalar function or a functional (meaning a definite integral of a function or

its equivalent). No loss of generality occurs when minimization is considered in place of

maximization because the process of the maximization of J is equivalent to the min-

imization of -J and the maximum of J equals minus the minimum of -J where

J is either a function or a functional.

Both functions and functionals may be optimized by either sequential or nonsequen-

tial methods. Nonsequential optimization methods seek the optimizing quantity (a con-

..... _.... _,,_1_ by means of satisfying necessarystant vector i or a function or a iuilt:t_on for a _,,, ........ ,

and/or sufficient conditions for optimality. Sequential methods seek the optimizing

quantity by means of constructing sequences which converge to a quantity effecting the

optimization. Sequential and nonsequential methods are also referred to as direct and

indirect methods (ref. 1), respectively.

The first part of this paper contains some mathematical preliminaries. The opti-

mization of functions and functionals is next treated from both the sequential and non-

sequential viewpoints. The optimization of functiona!s is treated through optimal control

theory. Finally some uses of function minimization techniques in optimal control theory

are considered.

SYMBOLS

Inasmuch as this paper is mathematical in nature, an effort has been made to define

each symbol at its introduction. Certain generalities of the notations are presented as

follows:
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a(_--)= lim a(t)
t-T

t<T

scalar-valued function of vector

vector-valued function of vector

O2f(_)

e_2

max

gradient vector

Jacobian matrix

Hessian matrix

maximum

min minimum

prime denotes matrix transpose

between vectors implies inner product; over a variable denotes first derivative

-1

II

over a matrix denotes inverse

absolute value of

IIII Euclidean norm

approaches in the limit

bar over a variable denotes vector

optimum value

increment

approximately equal to

C
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e is an element of

greater than or equal to zero when applied to a scalar; positive semidefinite

when applied to a matrix

greater than zero when applied to a scalar; positive definite when applied to a

matrix

implies

MATHEMATICAL PRELIMINARIES

Some mathematical topics which are needed for a modern discussion of optimiza-

tion are briefly presented in this section. A more thorough discussion may be found in

reference 2.

The symbol

Matrix Algebra

R n is used to denote the space of all elements (called vectors) of the

form

/xi/= =col(x i) (i = 1,...n)

where the x i are real numbers. If _ is an element of R n , the notation is _eR n.

Let

= col (vi) (i=1,2, . . . n)

= col

then the scalar

n

viwi

i=l

--i m ml-
=VW--WV

(i=1,2,...n)
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is called an inner (or scalar) product of v and _z and is written v • w. Let _, = A_

where A is an n x n matrix. Then _¢ • A_ is called a "bilinear form" on Rn and

. A_ is called a quadratic form on R n. Note that _- A_=A_._=_. A'_. Given

an nxn matrix A, if _. A_>0 for all _, then A is said to be positive semidefi-

nite (negative semidefinite) with notation A ->0 (=<0). If ,_ • A_ > 0 for all .x _ 0, then

A is said to be positive definite (negative definite) with notation A > 0 (< 0). If A = -A'

(that is, A is skew symmetric), then _.A_=0, since _.A__=Ax.x=x.A'_=-.x.Ax

whereby 2_ • A_ = 0. In examining a nonsymmetric matrix for definiteness the sym-
A+A'

metric matrix may be examined since A can always be written as
2

A=B+ C

where

and

B = B'- A + A'
2

c-A- A' __C'
2

and, since C is skew symmetric,

_. A_=_. B._+ _. C._ = _ • B_

Given a square nth-order matrix A, the matrix hi - A is the characteristic matrix

of A where I is an n x n identity matrix and X is a scalar. The determinant of

hi - A set equal to zero is the characteristic equation of A. The roots of the character-

istic equation are called the eigenvalues of A. Given A = A', let hi (i = 1, 2, . . . n) be

the eigenvalues of A. All eigenvalues of symmetric matrix are real. If for all

i = 1, 2, . . . n: k i > 0, then A is positive semidefinite; ki < 0, then A is negative

semidefinite; Xi > 0, then A is positive definite; ki < 0, then A is negative definite.

The vector space Rn with inner product

n

x • y = _ xiY i (x e Rn, y e R n)

i=l

is an example of a Euclidean space. The quantity i1_11 = (_ . _)1/2 is called a Euclidean

norm of .xe Rn and is a measure of the magnitude of _. Given _ = col (xi) and

=col (Yi) (i= 1,2, . . .n), if x. y= 0, then _ and 9 are said to beorthogonal. If

A' = A -1, then the matrix A is said to be orthogonal.
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The vectors xi (i = 1,2, . . . m), where m is a finite natural number, are said to

be linearly independent if the only a i (i = 1,2, . . . m) satisfying

m

_aix i :

i=l

where 0 is the null vector (a vector with all zero elements) of the same dimension as

x, is a i = 0. In Rn, n linearly independent vectors, such that each vector in R n can

be written as a linear combination of the vectors, are termed basis vectors for Rn. The

only vector in Rn which is orthogonal to a set of basis vectors is the null vector of

dimension n.

Define

Matrix Analysis

= col (fi) (i= 1,2, . . . m)

= col (xi)

Ofi(_)
Define f(x) as a vector-valued function of .x. Let

axj
exist.

The mxn matrix

(i= 1,2, . . . n)

(i= 1,2,...m; j = 1,2,...n)

_i' Ofl , afl__

/ __f2 °f2 0f 2 1

/afi(2)\ I _X--l' "_x2' Oxn

) =

is called the Jacobian matrix of f(_) with respect to and denoted by or
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Example:

Given

where A

_(_) = A_

is a constant matrix, then

_f(x} = A

Example:

Given

then

f(_) = / x12 + x', 1
x32 - x 2

Let f(_) be a scalar-valued function of the vector

respect to _ is defined as the column vector

of(_)
: _x n

with notation V_f(_).

x. The gradient of f(_) with
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Thematrix

is the Hessian matrix of f(_).

taxi 0xj)

Note that

af'(_)

Example:

Given

then

if A=A'.

f(_) = _. A_

v_f(_) = (A + A')_ = 2_

Given the composite function fL_(t)], then

d._(t)

if all derivatives exist. A Taylor series about the point _0_ Rn can be written as

1_ • --a2f (_))_ + Higher order terms

An n-dimensional region

(yl,Y2,... yn)' belong to

also belongs to S.

Convexity (ref. 3)

S is said to be convex if, whenever

S, their convex combination

_x 1 + (1 - O)yl, . . . Ox n + (1 - O)yn]'

Xl,X2, . . . Xn)' and

(0 =<0 =<1)
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Example:

(-
The set

S=t_: _e Rn, H_H<p) isconvex. Since

IIo_÷ (1- o)._1]_o11_II÷ (1- o)11_11<op÷ (1- o)p=p

Geometrically convexity means that the straight line connecting any two points of a con-

vex region belongs to the region.

A function of a single variable f(x) is convex (also concave upward) on an interval,

if for any two points x 1 and x 2 on the interval x 1 < x2, it satisfies Jenson's inequality

•
Geometrically this indicates that the value of the function of a point which is the average

of x 1 and x 2 is less than its average value at the two points. This condition may also
be stated as

(0 =<0 =<1)

The function f(x) is strictly convex if only the inequality holds. A twice differentiable

function f(x) on an open interval (not necessarily including the endpoints of the interval)

is convex if and only if d2f _->0 on the interval. This definition may be generalized to a
dx2

function of several variables. If D is a convex set of the points Xl, . . . Xn, a real-

valued function in D is convex if for _ and y in D the following holds:

f_l - 0)_ + 0_ =<(1 - 0)f(_) + 0f(j) (0 =<0 =<1)

It is strictly convex if the strict inequality holds for 0 <0 < 1 and _ and y are

distinct points in D. A function f(_) is concave (strictly concave) if -f(_) is convex

(strictly convex). If f(_) is a twice continuously differentiable function on an open con-

vex set D, it is convex in D if and only if the quadratic form (in _)

a2f(_) :,
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for every _ in D; that is, _2f(_) is positive semidefinitefor every _ in D. The
a_2

function is strictly convexif a2f(x)> 0. If f(_) is differentiable andconvex, then
_2

_(_) _>f(_*) + v_(_*). (_ - _*)

The Newton-Raphson Method

The Newton-Raphson method (ref. 3) for computing the root of an equation is a

successive approximation procedure.

For an equation in a single independent variable

start with an estimate of x, for example

y = f(x)

x(0), near the root of

f(x) -- o

which is to be determined. Then compute the intersection of the tangent line to the

graph at this estimate with the x-axis and use the intersection as the abscissa of the new

estimate. This gives the new estimate, denoted by x(1), as

x (I) = x (0)

For the second iteration

and for the nth iteration

x(2) = x(1)
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Next consider finding a root
equations

= col (xi) (i = 1,2,... n)

fl(_) = 0

f2(_) = o

of the system of

fn(X) = 0

The Newton-Raphson iteration sequence in this case is generated by

_(n+ 1)__ _(n)_ ____f_(n_'_ -1
l,a_:- JJ f [_(n)_

where

= coi (fi)

(n=0,1, . . .)

(i = 1,2, . . . m)

Conditions for the convergence of both the scalar and vector versions of the Newton-

Raphson algorithm are given in reference 3.

OPTIMIZATION OF FUNCTIONS

Consider the mathematical programing problem I of minimizing a scalar-valued

function f(_) (x e R n) subject to the constraint functions

(i=1,2, . . . m)gi(_) =>0

(j = 1,2, . . .p<n)hj(_) = 0

When f, gi, and hj are linear, the problem is called a linear programing problem

(ref. 4). If any of the functions are nonlinear, the problem is called a nonlinear pro-

graming problem (ref. 5). The case where f(_) is a positive semidefinite quadratic

form and the constraints are linear is called a quadratic programing problem (ref. 6).

The case where f(_) is convex, gi(_) is concave, and hj(_) is linear is called a con-
vex programing problem (ref. 7). The convexity conditions assure that the feasible
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region (the set of points satisfying the constraints) is convexand that any local solution is
also a global solution. Other forms of the optimization problem (suchas, separable and
factorable) are discussed in reference 7.

The solution (assumingit exists) of the optimization problem I, denotedby x*, can
be soughtby either sequential or nonsequentialmethods. Someof thesemethodsare
presented subsequently herein. The treatment of the problem constraints varies

according to the purpose of the discussion. In general, an inequality constraint of the

form

k I =<g(_) =<k 2

where k 1 and k 2 are constants, may be transformed into an equality constraint by the

introduction of a new (real) variable y and setting

This method is attributed to Valentine (ref. 8). Likewise an equality constraint

= 0

may be written as

0 _-<h(x) - 0

and treated as an inequality constraint.

General methods exist for solving constrained optimization problems as though they

were unconstrained (penalty functions primarily) and for treating constraints directly

(projection methods). See reference 7 for a summary of these methods.

Nonsequential Methods

Varying amounts of information about the solution of problem I can be obtained

depending on the properties of f(_), gi(_), and hj(._). First-order necessary conditions

are presented when the functions are differentiable. Second-order necessary and suffi-

cient conditions are given when the functions are twice differentiabie. Cases where _he

functions are not necessarily differentiable nor even continuous are considered in refer-

ence 9, and a method for minimization without computing derivatives is given in

reference 10.
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First-order necessary conditions.- In problem I assume that the functions f(x),

gi(,x) (i = 1,2, . . . m), and hi(x) (j = 1,2, . . . p) are differentiable. References 11 and

12 show that if .x* is the optimal solution to min f(x)

gi(_) =>0

hj (._) : 0

then there exist scalars ki (i = 0,1, . . . m)

satisfying at _* the following conditions:

(_*) > 0(i) gi =

and $i (i= 1,2, . . .p)

(i= 1,2, . . . m)

(j = 1,2, . . . p< n)

not all zero and

(i= 1,2, . . . m)

(2) hj(_*) = 0 (j = 1,2, . . .p)

(3) Xigi(x*) = 0 (i = 1,2, . . . m)

(4) Xi > 0 (i=0,1, . . . m)

(5) With

then

m p

i=l j=l

The quantities Xi (i=0,1, . . . m) and _j (j = 1,2, . . . p) are called dual variables

or generalized Lagrange multipliers. The foregoing statement of conditions (1) to (5) can

be regarded as an existence theorem for a set of Lagrange multipliers for problem I to

be sought, along with x*, from conditions (1) to (5).

The condition _0 > 0 means that it is legitimate, if necessary to obtain a

solution, to have X0 = 0. This situation however is abnormal since, for _0 = 0, _*

would be determined only by the constraining relations. Conditions which guarantee the

existence of a set of Lagrange multipliers with _0 _ 0 are now of concern. Such a set
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is knownto exist if the constraints of problem I satisfy the Kuhn-Tucker first-order
constraint qualification (ref. 13). Let _(0) be a point satisfying gi[._(0)]=>0 and
hjLx(0_ = 0. The first-order constraint qualification holds at _(0) if for any nonzero

vector _, such that _. V_giE_(0)] =>0 forall i such that gi[_(0)_ =0 and

• V_hj[x(0)] = 0 (j = 1,2, . . . p), _ is tangent to a once differentiable arc emanating

from _(0) and contained in the feasible region (ref. 7). With this constraint qualifica-

tion met at _*, then necessary conditions that ._* be a local minimum of problem I are

that there exist h i (i = 0,1,2, . . . m) and _j (j = 1,2, . . . p) satisfying conditions (1)

to (5) with _0 = 1.

Two other conditions, each independently guaranteeing the existence of a set of

multipliers with _0 fl 0 for problem I, also exist (ref. 7):

(i) If at a feasible point ._* there exists a vector _ such that

• V_gi(_*)>0 for all i such that gi(_*)=0, _. V_hj(_*) =0

(j = 1, . . . p) and if the V_hj(._*) are linearly independent, then a nec-

essary condition that ._* be a local minimum of problem I is that there

exist h i and _j satisfying conditions (1) to (5) with k0 = 1.

(ii) A sufficient condition that the first-order constraint qualifica-
--/_\

tion holds at a point x_"J satisfying _he ............. of --^_"^_ " +h_+
r (o)the gradients V_giLx _ for all i such that gi[_(0)_=0 and

V_hjEx(0) _ (j = 1,2, . . . p) be linearly independent.

Conditions (i) and (ii) are more useful than the original statement of the Kuhn-Tucker

constraint qualification because they can be tested. The Kuhn-Tucker constraint qualifi-

cation is sufficient but possibly not necessary to guarantee multipliers with _-0 / 0. It

is still questionable whether a weaker condition can be found.

It follows from conditions (1) to (5) that if problem I is unconstrained, then for _*

to be a local minimum of the differentiable function f(._), it is necessary that

V_f(_*) = 5

The foregoing results are called first order because they involve only first partial

derivatives. If f(_), gi(_) (i = 1,2, . . . m), and hj(.x) (j = 1,2, . . . p) are assumed

twice dffferentiab!e, then a mor_ complete characterization of _* can be given.

Second-order necessary conditions.- Let _(0) be a point satisfying the constraints

of problem I. The second-order constraint qualification holds at _(0) if the following is

true. Let _ be any nonzero vector such that _. V_gi[_(0) _ = 0 for all i such that
r ,'I F_/0_7

giL_(0)j =0 and such that _.v_hjLx, _j =0 (j=1,2, . . .p). Then _ is tangent toa
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twice differentiable arc emanatingfrom _(0) andcontainedin the region alongwhich

gi(_)=0 (i suchthat giEx(0)_=0) and hj(_:)-0 (j =1,2, ...p).

If the first- and second-order constraint qualifications hold at a point _*, then

necessary conditions that _* be a local minimum of problem I are that there exist

Lagrange multipliers with k0 _ 0 such that conditions (1) to (5) hold and such that for

every nonzero vector _, where _ -*• V_gi(x ) =0 (i such that gi(_*) =0) and
V -*• _hj(x ) =0 (j = 1,2, . . .p) it follows that

02L/-, .- _-_-

• o

point

that

unconstrained minimum at a point

A sufficient condition that the second-order constraint qualification be satisfied at a

_* satisfying the constraints of problem I is that the vectors V_gi(_*) (i such

gi(_*) = 0) and V_hj(x*) (j = 1,2, . . . p) be linearly independent.

Necessary conditions that a twice continuously differentiable function have a local
-,
x are

and

V -* f(x ) = 5

. 02f(_*) _) =>0
a_2

for all _).

Second-order sufficiency conditions.- Sufficient conditions that a point x* be an

isolated (unique locally) local minimum of problem I, where f(x), gi(_:), and hi(x) are

twice differentiable functions, are that there exist ki (i = 1, . . . m) and _j

(j = 1, . . . p) such that x*, )_i, and _j satisfy conditions (1) to (5) with h0 = 1 and

for every nonzero _ satisfying

• V_gi(x*) = 0

for all i such that ki > 0

for all k such that gk(._*) = 0

y.V_gk(x ) =>0

and ;_k = 0 and
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.y • V_hj(x*) = 0 (j = 1, . . . p)

it follows that

>0

Sufficient conditions that a point _* be an isolated local unconstrainedminimum
of the twice differentiable function f(_) are that

= 0

and

for all nonzero y.

Sequential Methods

In considering sequential minimization it is beneficial to be able to treat the opti-

mization problem I in unconstrained form even though the problem is constrained. To

this extent consider a method called penalty functions for solving constrained optimiza-

tion problems as though they were unconstrained. Interior and exterior penalty methods
-1-" ....... ",as presented in reference 7 are u_cu_vu herein.

Assume that an unconstrained minimization problem can be solved either by the

nonsequential methods previously presented or by the unconstrained sequential methods

to be presented in this section after the discussion of penalty methods.

An interior penalty-function technique considers problem II of the form min f(_)
x

subject to

gi(_[)> 0 (i= 1.... m)

Equality constraints are not allowed. Let

LilaL:

(1) I(.x) is continuous in _ for all

(2) I(_)-oo as any gi(_)-0.

I(x) be a scalar-valued function of .x such

satisfying gi(_) >0 (i= 1, . . . m).
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Let
then

s(r) be a scalar-valued function of a real variable
s(rl) >s(r2)>0 and s(r)-0 as r-0.

Example:
m

I(_)= Z 1
i=l gi(_)

r such that, if r 1 > r 2 > 0,

or

and

m

I(£)= - _ log gi(R)
i=1

s(r) = r i (i = 1,2, . . .)

The interior penalty-function method proceeds as follows: Define

U(x,r) = f(.x) + s(r) I(x). For a sequence of ri, where ri+l < ri (i = 1,2, . . .), minimize

the unconstrained function U(x, ri) obtaining a sequence x(rl),x(r2) , . . . x(ri), . . .

as r i - 0. Conditions under which .x(ri) converges to a solution x* of problem II as

r i - 0 are discussed in reference 7. The term s(r)I(x) may be regarded as a penalty

term added to the function f(_) ensuring that a minimum of U(_,r) is achieved in the

interior of the feasible region by balancing the avoidance of the boundaries and the mini-

mization of f(._). The solution ._* is approached from the interior of the feasible

region - hence the name "interior" method. The point _* may lie on the boundary of

the feasible region in the limit as r i - 0. It now becomes evident why equality con-

straints were omitted in problem II since, for equalities treated as inequalities, no

interior points exist.

Equality constraints as well as inequality constraints may be treated by the exterior

penalty-function technique. Consider problem II as before except that the inequality con-

straints may now include equalities treated as inequalities.

Let p(t) be a scalar-valued function of a variable t with properties that if

O<t l<t2,then O<p(tl)<P(t2) ,and as t-_o, p(t)-_. Let O(x) be a continuous

scalar-valued function of x with properties such that O(x) = 0 if gi(,x)= 0

(i= I, 2, .. .m) and O(x) > 0 otherwise.
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Example:

and

m

Z
i=l

p(t) = t i (i = 1,2, . . .)

The exterior penalty-function method proceeds as follows: Define

T(_,t) = f(._) + p(t)O(,x). For a sequence of ti, where ti+ 1 >ti (i = 1,2, . . .), minimize

the unconstrained function T(_,ti) obtaining a sequence _(tl),_(t2) , . . . x(ti) , . . . as

ti _ oo. Conditions under which _(ti) converges to a solution _* of problem I are

discussed in reference 7. The intuitive basis for the exterior method is as follows. If

strays too far from the feasible region, the penalty term p(t) O(_) becomes large

when t is large. Thus as t - co the tendency is to draw the unconstrained minima

toward the feasible region so as to minimize the value of the penalty term. This algo-

rithm is termed "exterior" because the movement of _(t) is, in general, from the out-

side or infeasible region toward the inside of the feasible region.

Now turn to the problem of sequential minimization of an unconstrained func-

tion f(._). The function f(_) may actually be unconstrained or it may be that a con-

strained problem is being solved by unconstrained methods; for example, penalty func-

tions. Here a set of _(i) (i = 0,1, . . .) is sought such that

and the sequence converges to a point _* which minimizes

such a sequence may be through the gradient method (ref. 3).

_(0) is assumed and _(0) is corrected by

r ,0 _

f(_). One way of generating

In the gradient method an

(s 0 > O)

thus producing

= = _ oV tLx,-,l

The parameter s 0 is chosen by

[ F _,

ol0>0
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for which a necessarycondition is

In general the gradient sequenceis

_(i+l) : _(i) ÷_(i) : _(i) _ _iv_f_(i) _

where the parameter a i > 0 is chosen by

or

The term "gradient" is used since 5x (i) = -aiV_f[_(i) _ is in the negative gradient

direction of f(_) at _(i). The gradient method is first order in that it makes use of

only first derivatives of f(_).

Another way of determining the minimum of f(_) by constructing sequences is the

direct application of the Newton-Raphson method to the necessary condition at _*

By the Newton-Raphson algorithm find a root, hopefully ,_*, of

In this way an _(0) is assumed to begin the process and form new _(i) by

_(i+1) = _(i)+ 6_(i)

Although it does not occur in the Newton-Raphson algorithm, a parameter

plying 5_(i) may be inserted and determined as in the gradient method.
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with __(i)
that is,

matrix must at each stage be nonsingular and, if _(i) is to approach the
a_ 2

minimum f(_), must approach positive definiteness as i - oo. If f(_) is strictly con-

vex, then these requirements are guaranteed. This Newton-Raphson method is termed

second order because it requires second derivatives of f(_). The Newton-Raphson

method is often called the "Taylor series" method because it occurs from

+ 5_( i)] approximated by a second-order Taylor series in 5_(i) about _(i);

Conditions for the convergence of the gradient and Newton-Raphson algorithms are found

in reference 3.

Now see how the gradient and Newton-Raphson methods behave when f(_) is a

quadratic function

f(i) = a + 6. _ + -- .C_

where the scalar a, the vector b, and the matrix C = C' > 0 are constants. First

apply nonsequential methods to determine :_*. The _,."_*_-,,..._.^_ necessary rnnditinn.........is

which gives

Since B2f(x) = C > 0,
_2

x* = -C -1 b. By the gradient method

R(i+i)9fi) F,,O

:#i)_ cR(i)]

= (I- eiC)x(i)- (_i6 (i= 0,1, . . .)
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where oq minimizes

yielding

or satisfies

=0

_b+C_(i+l_. E6+C_(i_ =0

or

Oli =

Reference 3 shows that the sequence defined by the gradient method converges for arbi-

trary _(0) when

f(_) = a + [_• _ + --_. C_

2
(C = C' > 0)

The convergence may not, however, be in a finite number of steps.

Now apply the Newton-Raphson algorithm. The sequence is generated by

_(i+l) = :_(i)_82f _(i)_ -1
(i=0,1,...)

with

v_f(_)= 5 + c_

and

or

_(i+_):_(i)_c-*[b+c_(i)_

On the first iteration (i = 0)
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_c-lfi

=:_*

Thus the Newton-Raphson method converges in one step to _* from arbitrary _(0)

when f(x) is a quadratic function as defined.

For the quadratic function the gradient method produces a sequence which ultimately

converges and requires only first-order information. However a very high number of

iterationsmay be required before the limit point is recognized; thisis a disadvantage in

the gradient method. The Newton-Raphson method converges rapidly but has the disad-

vantage of requiring second-order information and a matrix inverse to exist. A method

which requires only first-order information and converges in a finitenumber of steps for

the defined quadratic function is the conjugate directionmethod which is now discussed

(ref.14).

Define

and consider an arbitrary sequence

where the scalar

for all i and _ij'_

correction formula

_(i+l) : _(i) + ai_(i )

oti minimizes f_(i+l)__ fI_(i)] which implies that

_(i+1). riO) =o

is an unspecified vector function of _(i).

(i = 0,1,...)

By repeated use of the

n-1

_(n) = _(j+l)+ _ ai_(i)

i=j+l

where _ is of dimension n. For the quadratic function

_(i) : _ + c_(i)
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and

Form the inner product

The term _(j+l) . _(j)

_(n)= _)+ c_(n)

=_ +cl_(J+1)+

U
n-I

n-1I_i_(i

i=j+l

= _(j+1)+ _ _iCP(i)

i=j+l

_(n) . _(j) yielding

n-1

_(n) ._(j)= _(j+l).'_(j)+ _ oLi_(j) . c_(i)

i=j+l

is zero. Let _(i) (i = 0,1, . . . n-l) be chosen such that

b(i).c5(j)=o (i_j)

Such vectors are said to be C-conjugate. In this case, for C > O, it can be shown that

_(0),_(1), . . . _(n-1) are linearly independent and form a basis of the space R n. With

_(i) (i = O, . . . n-l) chosen to be C-conjugate functions of _(i)

_(n). _(j)=0 (j = 0,1, . . . n-l)

Since the _(J) form a basis of R n

or

l_+ Cx (n)= 0

or

_(n) = -C'I_=_*
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Thus the method of conjugate directions presented minimizes the quadratic function in

n-steps where n is the dimension of _.

If _(i) = A_(i), where A is a positive definite matrix, the method of conjugate

directions is referred to as the method of conjugate gradients. A particularly useful

conjugate-gradient method is the Fletcher-Powell (ref. 15) reformulation of the Davidon

method (ref. 16). Here

:

where H(0),H (1), . . . is a sequence of symmetric positive definite matrices. The

matrix H (0) is arbitrary but is usually taken to be the identity matrix and subsequent

matrices are determined by

_(i)_(i)' H(i) _(i) _(i)'H(i)
H(i+l) = H(i) + _{i_ _-fi_

p,-,._p,-, _(i).H (i)_(i)

where

= _

It is shown in reference 15 that as _(i) reaches _*, H (i) becomes C -1.

The first-order methods of gradients and conjugate directions and the second-order

Newton-l_phson method have been introduced and their behavior has been examined when

the function to be minimized is quadratic. For functions not necessarily quadratic the

gradient, conjugate direction, Newton-Raphson, and other methods (ref. 17) are still

applied. Usually convergence is not guaranteed but it is hoped that a guess ,_(0) can be

made sufficiently close to _* so that the methods behave quadratically; this means that

they converge in a finite number of steps. The choice of _i is often made by search

methods (ref. 18).

OPTIMIZATION OF FLrNCTIONALS

The optimization of functionals (a general functional is a mapping of a function

into a real number) lies in the domain of functional analysis (ref. 19). A subdivision

of functional analysis treating the optimization of functionals in the form of definite

integrals (or equivalent representations) is called the calculus of variations (ref. 20).

An extension of the calculus of variations is found in the modern subject of optimal

control theory (ref. 21). Excellent survey articles on optimal control theory are
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given in references 22 and 23. References 24 and 25 demonstrate how calculus of

variations problems may be solved by optimal control methods. For a modern

approach the optimization of definite integrals (or equivalent representations) are

considered herein by the methods of optimal control theory. As in the case of func-

tion optimization, optimal control theory may be formulated either sequentially or

nonsequentially.

The Basic Optimal Control Problem

Let a controllable dynamic system be described by a set of vector differential

equations of the form

where

te _0, tl]

_eR n

f_ Rn

uc R m

t

to

t 1

= col (x i)

fi(t)

fi = col (ui)

initial value of _(t)

x(t)= f _(t),fi(t),t]

time

initial time

final time

state variable of system

(i = 1,2, . .. n)

control variable

(i= 1,2, . . . m)
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Controls which are piecewise continuous functions of t and for each t satisfy

u(t) e U m c R m are herein called admissible.

Examples of U:

(a) If 5 is unconstrained, then U = R m.

(b) If I1_11= 1, then U is the boundary of a unit hypersphere

with center at the origin.

(c) If lUll _-<1 (i= 1,2, . . . m), then U is the interior and

boundary of a unit hypercube centered at the origin in Rm.

Assume a performance functional exists in the form of a definite integral of a function

f0(x,u,t) denoted by

_[.1J = foE_(t),_(t),t_
0

For two controls

dt

Ul and u2, 51 is said tobebetter than u2 if

Also. let there be target sets SO and S 1 in Rn such that the control _ with

=f(x,_,t) must take _(t) from _(t0) =_0c SO to _(tl) _ S1. The time t I is the

first time x(t) enters S1.

The basic optimal control problem is as follows: For all _ e U which take

_0c SO to _(tl) e S1 through

x=

find the control (or controls, ifany exist)which minimizes

J = f_l f0_(t),fi(t),t_ dt

Such coilti_olsare called ^-"--_'

Discussion

An optimal control (or controls)exists ifa control (or controls) can be found which

takes _ to _(tl) such that,if u* is an optimal control, J(u*) _----J(_)for all r,c U.
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Based on the assumption of the existence of an optimal control (or controls) necessary

conditions that a given control in U be optimal can be established for a wide class of

problems. The most general set of necessary conditions is the Pontryagin maximum

principle (ref. 21). If a control fails the necessary conditions, then it is not optimal.

Conversely, all the controls in U which satisfy the necessary conditions need not

be optimal (unless the necessary conditions are both necessary and sufficient). Those

controls satisfying the necessary conditions are called "extremal controls." If an

optimal control exists and is unique, then it follows from the necessary conditions. If

no control can be found to satisfy the necessary conditions, then no optimal control

exists.

Next consider some sufficientconditions for optimality. Ifa control failsa given

set of sufficientconditions,the control may stillbe optimal (unless the sufficientcondi-

tions are also necessary). Sufficientconditions can be naturally divided intotwo classes:

local and global.

Local sufficiency.-If _ _ U satisfiescertain conditions,then J(_) --J(u) for all

belonging to some neighborhood of _ and not necessarily all of U.

Global sufficiency.-If _ e U satisfiescertain conditions,then J(_) _ J(u) for

all u e U. Global sufficiencyimplies existence. Necessary conditions are generally

derived by assuming thatan optimal control _* exists and by examining properties of

the problem in a neighborhood of u*. Necessary conditions derived in thismanner are

local conditions. A sufficiencyconditionfor the continuous optimal control problem is

the Hamilton-Jacobi-Bellman theory (ref.2).

Other Forms of the Optimal Control Problem

Some other forms of the optimal control problem are now presented. The basic

optimal control problem as stated appears in a nonautonomous form; that is, the inde-

pendent variable t appears explicitly in the equations. This problem can be trans-

formed to an autonomous problem by the introduction of a new state variable Xn+ 1 such

that

Xn+l = 1 (Xn+l(to) = tO; Xn+l(tl) = tl)

The problem as stated is in Lagrange form (from the Lagrange problem of the

calculus of variations) and can be changed to Mayer form by the introduction of a new

variable x0 such that

= f0( , 5)

The problem is then to minimize x0(tl).

_-0)
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The problem may have been stated in Bolza form; that is, minimize

w ere
I'.agrange problem, introduce a new variable Xn+ 1

_:n+l = Um+l

and then minimize O(_,u)

_(tl). For a

and a new control urn+ 1 such that

IXn+l(tO)= O; Xn+l(tl)=/[_(tl)]l

+ Um+ll dt.

A free-end time problem,

time problem by the introduction of a new variable

t 1 unspecified, may be transformed into a fixed-end

r where

and by making the transformation

The unknowns t 1 and t o

way new state variables Xn+ 1

and to is replaced by Xn+ 1

unspecified).

0<T<I

t=t 0+ (t1-tO) r

can be eliminated by treating them as parameters.

and Xn+ 2 are defined such that

_kn+1 = 0

 n+2=0

and t 1 by Xn+ 2 in the equations (if to is also

In this

A fixed-end time (t 1

introducing the new state variable Xn+ 1 with

specified) may be treated as a free-end time problem by

Xn+l = 1 (Xn+l(t0) : to; Xn+l(tl) = tl)

Transformations of these types are given in reference 24.
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Constraint s

Constraints, including the state differential equations,may be treated in optimal
control theory in much the sameway as in the optimization of functions.

Given h(_,_)dt= c, where c is a given constant, introduce a newvariable
0

Xn+1 definedas

_'n+l : h(x,u) (Xn+l(t0) = 0; Xn+l(tl) = c)

(Xn+l(t0) = 0; Xn+l(tl) = 0)

to place the integral constraint in the form of a state equation.

Given k 1 =<y(_,u) _-<k2, Valentine's method (ref. 8) may be directly applied to con-

vert the inequality into an equality.

Given g(x,_) = 0 over _0,t17 the following approaches may be used:

(1) Introduce a new variable Xn+ 1 defined as

kn+l = g2(_,_)

In reference 28 the

¢(_,_)dt for t e _to,tl]

(2) Apply Lagrange multipliers as in the calculus of variations (ref. 20).

(3) Apply penalty functions as shown in references 26 to 28.

state equations are included in the penalty terms.

t_to" _
Consider q_(x,u) dt =<M, where (p(x,u) > O. Since

is monotone increasing in t, the problem may be divided into two separate problems:

(a) Solve with q)(_,fi) dt ; M.

0
otl

(b) Solve without the constraint eliminating those results causing _t,, _o(_,_)

Comparing the results of (a) and (b) and selecting the best result solves the original

problem.

See also reference 29 on constraints.

dt> M.

Nonsequential Methods

Necessary conditions.- From the foregoing transformations consider a restatement

of the problem in autonomous form: For all u e U which take _'0 e SO to x(tl) e S1

through
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x = h_,5)

find the control (or controls_ if any exist) which minimize

j(G) = f_,l fo(_,5 ) dt
0

Change to a Mayer problem by introducing x0. Both f(_,5) and f0(_,5) are continu-

ous in _ and u and continuously differentiablein _:. Consider t I -t O as unspeci-

fied. Pontryagin's maximum principle may now be stated as follows. If 5", tO =<t _ tl,

is an optimal control, then there exists a nonzero (not identically zero) continuous

n+l dimensional vector _.(t) -- (X0,kl, . . . kn)' the elements of which satisfy

n - -

d . =_x] - _ afi(x'u) xi
i=o %

(j = 0,1,... n)

such that.

n

(a) max H(x,u,k)--H(x,u'._) (re _O,tl_) with H-- _ _ifi(x,u)
i=0

(b) HE_(t),5*(t),_(t)_-0 (te [to,tl] )

= Xofo(_,_) + _ • _(_,5)

(c) Xo(t)= Constant _-_0

(d) The vector (Xl,...kn)' is perpendicularto SO and SI at to and tl,

respectively. This is called the transversalitycondition.

With the introduction of H, the state (xi) and auxiliary variable (ki) equations can

be written in canonical form

dxi_ _H (_,5,_) (i= 0,1, . ..n)
dt aXi

a__A= __H (_,5,X)
_ i"l y=

--1,

(i=0,1, ...n)

The maximum principle generates extremal controls. Given the existence of an

optimal control, the best extremal control is optimal. In using the maximum principle

try to ensure that an optimal control exists for the problem, find all extremal controls,
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and select the best. Neither of these steps are easy (ref. 30). Particular difficulties of

the maximum principle known as singular and abnormal problems are discussed in

reference 31.

Example:

Consider an optimal control problem with variables

=(Xl,X2)' and _ =(_1,_2)'. Let the trajectory at t I be

required to intersect the surface Xl 2 + x22 = 1. The transver-

sality condition states that _(tl) is colinear with the normal to

the terminal surface. Thus

S1 =Ix: 01(x) =x12 +x22- 1/

L J0

and

is the normal. Thus

_Ixl(tl_

 (tl) = Lx2(tl)j

with a a scalar.

Example:

Consider a system the state equations of which are

Xl = x2

x2 =u

with control variable constraint

[u[-<l

whereby

Transfer the system from a given initial state SO = _xl(t0),x2(t0) _
to the rest state S1 = _,03 in minimum time. Thus
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tl

J= _t 0 dt=tl- t0

An existence theorem applies to this problem. (See appendix B

of ref. 24.) The best extremal control is then the optimal in the

sense of minimum time.

To deduce the extremal control invoke the necessary conditions of the maximum

principle whereby

H = _'0 + XlX2 + >'2u

_,2= -2-_-H= -xi
@x2

>,l(t)= Xl(tl)

L2(t) = X2(tl) + >,l(tl)(tl- t)

Therefore

where

H=X 0 + ClX 2 + (c 2- clt)u

c I = kl(tl) = Constant

c 2 = Xl(tl)tl + k2(tl)

The control which maximizes H is

where

u* = sgn(c 2 - clt )

(a(O > o)

(a(O < o)

(a(T) = O)
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If c 2=c 1=0, then kl =k2 =0 and H=k0. Condition(b) implies that X0 =0 or

X = Xl = 0. However the maximum principle states that _. / 0 which is a contradic-

X2

tion. Therefore on an optimal trajectory either c 1 or c 2 / 0. The control u*

changes sign at most once. The argument of sgn in u*

a(t) =c 2-clt

is called a "switching function." Forming

dx I

x 2 dx 1 _ x2

dt

or

x 2 dx 2 = u* dx 1 (u* = +1)

whereby the extremal trajectories satisfy

x22
2 - +xl + k

(where k is an integration constant) where

dx 2
> 0 (u* = 1)

dt

dx2 =n< 0 (u* -1)
dt

is shown in the following sketch:

x 2 x 2

x I x I

u(t) = -1 u(t) = 1
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Since there can be at most one switch, an extremal path consists of at most two

parabolic arcs. Furthermore, since an extremal path terminates at the origin, the

terminal arc; that is, the second arc if there is more than one, belongs to one of the

two half parabolas x22 -- 2x 1 (x2 > 0) or x22 = -2x 1 (x2 < 0). These half parabolas,

denoted by A0 and B0 in the following sketch, compose the switching curve in state

space; that is, the locus of states at which an extremal control switches:

x2

xl(t0)'x2(t0) ]

Xl(t0),x2(t0) ]

A

The switching curve divides state space into two open half spaces. Extremal paths which

start below the switching curve correspond to extremal control sequence 1 - -1, and

conversely those originating above the switching curve correspond to extremal control

sequence -1 - 1. If the initial point of an extremal path belongs to the switching curve,

there is no switch.

Two observations follow:

(1) For initial state _l(t0),x2(t0) _ extremal control is unique, hence, optimal.

(2) There exists an optimal path from every point in state space R 2.

Since S1 and S2 are points, the transversality conditions are automatically

satisfied. To show this, for the terminal manifold

/_l = x 1 = 0
S1

2 x2 0

(where S 1 is the intersection of 01 and 02)
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is normal to anyvector in the tangentplane of

plane of S1 if and only if it is orthogonal to

S1•

V_01

lies in the tangent
A vector _2

and V_02. Since

then • V_01=0 yields a 1 =0 and • V_02 =0 yields a 2 =0. Therefore
a2 a2

the only vector in the tangent plane of S1 is the null vector which is orthogonal to all _.

Sufficient conditions.- A statement of the Hamilton-Jacobi-Bellman method is pre-

sented in this section. Further information is given in references 2 and 31 to 36. The

discrete form of this method is better known as dynamic programing (ref. 33).

Theorem: Consider the control process in R n

x -- h ,a,t)

with initial state _(t0) and terminal set S1 c R n. Admissible controllers are all

piecewise continuous functions fi(t) on tO =<t _-<t 1 with values in the restraint set

U c R m, steering the response _(t) from _(t0) = Y-0 to _(tl) e S1. The functional is

j(fi)=/_(tl)_ + y_l f0E_(t),fi(t),t_d t
0

where l, f, and f0 are functions continuously differentiable in all arguments.

there exists a continuously differentiable control fi*(_,x,t) so that

Assume

*-- max[-fo(_,a,t) + _- f(._,_,t)_H (X,x,t)=
fieU u

a - - -* - -

Let C(x,t) for x e R n and t _ t 1 be a continuously differentiable function of

second order which is a solution of the Hamilton-Jacobi-Bellman equation
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3C(_,t) + H*(V )ot _C,_,t = 0

with C[_(tl),tl_ =-l_(tl) _ for _(tl)e S1. Assume that the control law

=-* V -ut cx,)
determines a response _(t) steering (_o(to),to) to (Sl,tl); then _ is an optimal

control (provided it lies in U) With optimal response _(t), and with

Example:

Consider the linear time-varying system described by

= A(t)_ + B(t)_ =

and the functional

J= 1_(tl). F_(tl)+ 21- t;t 0 _(t). Q(t)_(t)+ u(t). R(t)5(t)]dt

where t 1 -t O is given, _(t) is unconstrained, _(t)+ Rm,

_(tl) is unspecified, x(tl) e S1 =R n, F is a constant nxn

positive semidefinite matrix (=>0), R(t) is a continuous matrix

(>0), Q(t) is a continuous matrix, (->0), A(t) is a continuous

n x n matrix, and Bit) is a continuous n x m matrix. The

problem is to find _ to minimize J. With regard to the suffi-

ciency theorem

/Ix(t1) _ = 1_(tl) • F_:(tl)

H*(_,x,t) = max H(,r<,k,u,t)
tieR n

tieR m
+ 5-Ru)+ X" (Ax + Bu_

The first partial derivative of H(_,_,u,t) with respect to 5

equal to zero gives

set
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or

-Ru + B'X = 5

= R-IB'X

This 8 maximizes H(X,_,_,t) since the second partialwith

respect to _ gives -R < O. Thus

H*(X,x,t) = 1- Q_+ 1--_x • _x • BR-1B'X + X • A_

Look for a solution of the Hamilton-Jacobi-Bellman equation

0C ,( -9 aC-_-+ H V_C,x, =_+

where at t 1

C_(tl),tl]

Try a solution of the form

1 V_C • BR-1B'V_C - 1_. Q_ + v_C • A_ = 0

=-/Ex(tl)_ =-l_(tl). Fx(tl)

C(_,t) = - ½_(t) • K(t)_(t)

where K(t) is an arbitrary differentiable n x n matrix. Assume that K(t) = K'(t)

and let K(tl) = F satisfy the boundary condition. With

aC = _1_. I_(t)_at

and

v_c = -K(t)_

the Hamilton-Jacobi-Bellman equation becomes

-21-_.I_x+ 2I-K_.BR -IB'K_- I_.Q__ Kx. Ax=0

1 (._ . KA_ + x • A'K,_). The Hamilton-Jacobi-Bellman equationWrite Kx.Ax as
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'- (-K+KBR-'B' Q KA A'K) 0
X ° - - - =

is identically satisfied for K(t) satisfying

I_(t) = K(t)BR-1B'K(t) - g(t)A - A'K(t) - Q

which is the matrix Riccati equation often referred to in optimal control theory.

theorem guarantees the optimality of

_* (t) = R- 1 (t) B'(t) V_C (_,t) = - R- 1 (t) B'(t)K(t) _(t)

with

(K(tl) = F)

The

j(fi.) = _C@0,t0)= 1- • K(t0) 0

Maximum principle and sufficiency.- With some conditions added to the basic

optimal control problem the maximum principle becomes sufficient as well as necessary.

A formulation of this result is found in references 36 and 37.

Sequential Methods

The optimization of functionals in the form of an optimal control problem may also

be treated by sequential methods. Here try to form a sequence of admissible controls

u(i)(t) (i = 0,1, . . .) which yield x(i)(t) through the differential equations

x(i)(t)=@),a(']

and generate a monotone decreasing sequence of values j(i) of the performance index J

which converge to a minimum value of J. As in the sequential optimization of functions,

there exist the methods of gradients (refs. 1 and 38), conjugate gradients (ref. 39), and

second-order variations (ref. 40). A form of the Newton-Raphson process exists for

optimal control problems in the same sense as in function optimization problems in that

it seeks to satisfy iteratively the necessary conditions of the nonsequential methods

(refs. 41 and 42). For a summary of these methods see reference 43.

In order to illustrate the general approach of the sequential methods, a simple form

of the gradient method is presented. Consider the problem of finding an unconstrained

control _(t) which minimizes

J= ¢'[_(t 1)_
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where _(t) is determined through _ = f(_,5.), t e Et0,tl3, .x(t0) = Xo, and t 1 - tO is
specified. Try to construct a sequence 5.(i)(t) so as to minimize J. Assume a con-

trol function 5.(0)(0 and solve for ._(0)(t), the solution of

Writing the variational equations for

around

=

x = _(_,5.)

_(0) (t),fi(0) (t)_ yields

= 6._(o)+
a_

af _:(°),5-(°)1 _5(0) (6_(o)
aa

o)

Int roduc e

_(0)(t) • 5_(0)(t), to obtain

d -(0) 6_:(0) _(0)
_x (t). (t)=

_(0)(t), unspecified for the moment, and differentiate with respect to t,

+ af"_'_(O)'5(O)-]ax-_.(0_. 5_(0) + af"I_(O)'5(O)_as,x(O)" 65.(0)

Define _(0)(t) as the solution of

_(0)(t) = -

whereby

d_(0)(t). S_(0)(t) =
dt

-' 0
o,_#),a(o)_x(°)•oa(°)

05.

or

X(0)(tl) . 5_(0)(tl) = _ __ _(0) . 5_(0) dt
Jt 0 aft

Define
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whereby

_(O)(tl). 5_(0)(tl)

85(0)(t) is undetermined.The quantity

by solving the following optimal control problem:

Find 5_(0) so as to minimize

= V_:(pER:CO)(tl)-] •5_:(0)(tl)= 5¢P_ (O)(tl)]

= q_E_(0)(tl)+ 5X'0)(t,)_ - _p_X(0)(tl)]

In the gradient method 5_(0)(t)

• 6G(0) dt

is determined

subject to the constraint p2 = t_t," 5_(0)(t) • W(t)Sfi(0)(t) dt where W(t) is a positive

definite symmetric matrix and P is a positive constant• The p2 constraint is intro-

duced so that the magnitude of 5G(0)(t) can be controlled to insure the validity of the

foregoing linearization process. The matrix Wit) is added for weighting purposes.

The solution of this problem (easily obtained by the use of nonsequential methods) is

5_(O)(t) = W(t) -I _f'_x(O)(t),u(O)(t)_ _.(O)(t)

with

u wl! 0p2udI
1/2

and

_;[_(o__;,_:_,ct_I_'_(o_._-__'_(o_]":dt

In practice W and p2 are specified by the user•

Replacing u(0)(t) by u(0)(t) + 5u(0)(t) gives a new control u(l)(t) yielding

j(1)= _p_(1)(tl) _ (to first order)differing from j(0)= _p_(0)(tl) _ by

_t_V__,(o)w-__'_(o)]_/2
-P a\t0 L'_u " _ -J dt. A correction to fi(1)(t) is obtained by treating
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_(1)(t)
_(i)(t)

with

as _0,(t)1___ and repeating the process. Repetitive application yields the sequence
(i = 0,1, . . .) determined by

_ -w-l(t) #i)(t)
oti a_

_(i) determined from backward integration of

and _(i)

t(i)(t) :-Of"[x(i),u(i)_ x(i)(t)

82

determined from forward integration of

I_ (i) (tl) = V_[_ (i)(tl)_l

and

cxi =

x(i)(t): f_(i)(t),_(i)(t)_

•p2W-1af'_'(i)85 dtll/2

=

5j(i): t_ 0_'_(i) _(i) 1
L ' j _(i) . 5u(i) dt

a_

_p

/ o_ Ou
dt

The gradient of j(i) with respect to the magnitude of 5u (i) is given by 5j(i)/P.

For appropriate values of W and p2 this process generates a sequence of

u(i)(t) providing a decreasing sequence of j(i). At each stage it may be necessary to

readjust W and p2 to retain convergence•

Ideally the process converges to a point where

6u(i)(t)- -w-l(t) af'[x(i)(t)'u(i)(t)]_(i)(t)= 5
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or where

af'_(i)(t),u(i)(t)__(i)(t)

a_
-=6

For the original optimization problem (not the one determining

H(x,k,u) = k - f(_,U)

and

VsH(_,_,5) = af'(_,5)
a5

_(°)(t))

whereby

5a(i)(t)--w-l(t) VaH_x(i),_(i),a(i) _

Hence the term "gradient" is used for this sequential method. Convergence is then to a

local extremum of H(x,k,u),thatis, where V_H(x,_,u) = 0. The convergence point may

not be the global maximum of H(x,k,u) with respect to u as the Pontryagin maximum

principle requires. The gradient method has been found to be highly effectivein atmo-

spheric trajectory problems.

FUNCTION OPTIMIZATION AND OPTIMAL CONTROL THEORY

Function optimization theory may be applied to optimal control problems. H the

state equations are in the form of difference equations (rather than differential) or if a

continuous problem has been discretized (ref. 44) and the performance index is a finite

sum, then function optimization techniques can be directly applied (ref. 45). A discrete

form of ttle maximum principle appears in reference 46. Function optimization methods

can also be applied to optimal control problems in another way as discussed in this

section.

An unfortunate by-product of applying Pontryagin's maximum principle (or the

calculus of variations) to some optimal control problems is a two-point boundary-value

problem. A large class of these boundary-value problems involves a vector differential

equation of the form:

y = _(_, sgn _., _, t)
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where

= col (Yi) (i= 1,2, . . . 2n)

_. = col (zi) (i= 1,2, . . .l)

sgn _. = col (sgn zi) (i= 1,2, . . .l)

and

2 = col (oli) (i = 1,2, . . . m)

The elements of the vector y are the state (xj) (j = 1, . . . n) and the auxiliary

variables (hj) (j = 1, . . . n) of the control theory with the ai unknown constants

usually corresponding to some of the initial values of the Yi and/or the final time t 1.

The vector _ = _.(_,_,t) is made up of functions termed "switching functions" in control

theory. The two-point boundary-value problem arises when the optimal-control theory

requires that 2 be determined to satisfy terminal conditions of the form

where _(_,t) is the solution of equation (1) for given 2.

For example, in an optimal control problem where the initial state is specified and

the terminal state unspecified, the transversality conditions yield no information about

hi(t0) (i= 1,2, . . . n) but require ki(tl) =0 (i= 1, . . .n). This problem could be

put into the form of equation (2) by identifying

: hi(to) (i = 1, . . . n)

as constants to be found such that

e[Y(2,tl),2,tl_ = col [hi(a,tl)_ = 5 (i= 1, . . .n)

The terminal conditions represented by equation (2) can be viewed as an implicit

system of equations in 2. From this viewpoint a solution of equation (2) may be sought

directly by the Newton-Raphson method. Alternatively, let a positive definite function be

formed in the vector _. The minimum of this function with respect to 2 is
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Thus equations (I) and (2)can be solved by finding an _ which minimizes a positive

definitefunction in _ to zero. With thisviewpoint any of the sequential function mini-

mization methods may be applied. The applicationof these methods to solve boundary-

value problems in optimal control is discussed in references 47 to 49.
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